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Chapter 1

Introduction

In simplest terms, motion planning is the problem of pathfind-
ing, the piloting of an agent—a subject under our control, such
as a car or a robot—from a given starting point to a destina-
tion. More formally, motion planning consists of discovering a
trajectory for the agent from some initial state, xinit , to a goal
state, xgoal , subject to the agent’s laws of motion and any other
applicable constraints, such as balance, collision avoidance, or
prevention of other undesirable motions.
Although pathfinding is a core application, motion planning has
a far wider scope. For example, an incrementally more advanced
application is the “Piano Mover’s Problem”, a well-known toy
example in motion planning which, in general, deals with the
problem of how to maneuver a piano through narrow corridors,
doorways and stairwells, all the while avoiding walls and furni-
ture, so that the piano is delivered to its final resting place un-
harmed. Motion planning also addresses problems such as how
to parallel-park a car, or back a triple-trailer truck into a load-
ing bay. Manipulation tasks pose additional constraints, such
as the avoidance of manipulator self-intersection, and of inter-
manipulator collisions (and this is all on top of the base problem

Figure 1.1: A maze: one of the
simplest motion planning problems.

of the collision-free motion of the object being manipulated). The general problem of planning,
sequencing and coordinating movement of multiple agents also falls within the purview of this field.

With such wide scope it is not surprising that motion planning has many diverse and far-reaching
applications in the real world, and thus garners considerable research attention. Aside from the
most obvious applications to autonomous robot locomotion, robot-aided assembly, and the general
problem of navigation, motion planning is also used in many virtual environments: computer games,
computer generated animation in movies, and virtual prototyping. It even finds application in more
remote areas, such as protein folding and drug design.

1.1 Kinodynamic motion planning

A difficult subclass of motion planning problems is that of kinodynamic systems. Whereas most
typical motion planning problems are kinematic, in that they deal only with the agent’s configura-
tion—its position, orientation, and the internal arrangement of agent parts—kinodynamic motion
planning, on the other hand, deals with the agent’s state, x, which consists of the agent’s config-
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4 Chapter 1. Introduction

uration, q, and its first time-derivative; that is, x = (q, q′). What makes kinodynamic planning
difficult, aside from the larger search space (twice the dimensions relative to kinematics-only plan-
ning with same agent), is the frequent abundance of deep “dead-ends” in this search space, regions
that tend to ensnare the planner yet provide little prospect of advancing it towards its goal. These
difficult regions are generally the result of the “cross product” of the environment’s geometry and
the agent’s laws of motion.

Kinodynamic systems are common in the real world. Some typical examples include driving a
car on snow and ice, riding a bike, flying a helicopter, and even human motion, when it involves
dynamic or acrobatic moves. In general, any system in which inertia or dynamic balance plays a
significant role is kinodynamic, although the absence of these traits does not necessarily indicate
to the contrary.

1.2 A sample kinodynamic problem

Throughout this proposal we make repeated use of a particular kinodynamic system, namely the
riding of a bike, to illustrate points or present results. The system is introduced here so that the
reader is already familiar with it when it is employed. This also serves to illustrate the precise
problem parameters being presented to a motion planner in a typical query.

In this example system then, the bike has a fixed forward velocity, and the only mode of agent
control is the direct manipulation of the bike’s steering angle, which is generally constrained to lie
within some reasonable interval (e.g., {−π/4,+π/4}). What therefore makes this system difficult
to work with is the multi-purpose function of this one control input, which simultaneously acts
to effect progress, avoid obstacles, and keep balance. A further hindrance is the counter-intuitive
nature of bike motion, such as the execution of turns by first steering away from the intended
direction of travel in order to set up and “lean into” the turn.

(a) agent (b) environment, xinit , xgoal (c) planner output

Figure 1.2: A sample kinodynamic system used throughout the proposal: a fixed-velocity bike. “1” and “2” indicate
the locations of xinit and xgoal , respectively; at these points both states dictate that the bike be facing right, be
upright, and have zero lateral lean velocity.

Figure 1.2 illustrates a particular motion planning query for the bike. In general, a motion
planning problem specifies:
• the starting state xinit

• the goal state xgoal

• the geometry of the environment
• a description of the agent’s laws of motion

For actuated systems, the last is usually provided in the form of a function, f(x, u), where x is the
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agent’s current state, and u is the control action being applied (i.e., the bike’s steering angle). In
the case of a continuous-time system, the function computes the resultant state vector derivative:

x′ = f(x, u)

In the case of a discrete-time system, it computes the subsequent state of the system:

xk+1 = f(xk, uk)

Also, for motion planners that do not perform any pre-computation step on the environment, a
collision detection routine is usually provided in lieu of the complete description of the environment
itself.

Given this description of the problem, the task of the motion planner is to find a trajectory from
xinit to xgoal that conforms to the agent’s laws of motion and all other mandated constraints. This
trajectory is the planner’s output, although for actuated systems the solution additionally includes
the exact sequence of control actions that were applied to achieve the trajectory. The latter is
useful when planning motion for physical robots, since this sequence can then be fed directly to
the physical agent to achieve the discovered solution trajectory.

1.3 Research goal and themes

The main weakness of current kinodynamic motion planners is the effort they waste on exploring
regions of the search space that are predestined to be fruitless, the dead-ends alluded to above.
Thus the primary goal of the research presented here is the development of a smarter, more efficient
kinodynamic planner, one that endeavours to extract maximum benefit from its work by avoiding
such waste and other redundant behaviour.

More generally, the primary theme throughout this proposal is “smarter motion planning”. This
essentially involves pre-computing or learning aspects of potential solutions, on a global or local
scale, leading to predictive models of where the feasible regions lie, or conversely, which regions
are predestined to failure. These models are then used to constrain planner exploration. On an
intuitive level, this approach resembles the use of cellular automata for solving mazes (see Figure
1.3), where on each iteration “dead-end” cells, namely ones with 3 surrounding walls, are “filled in”.
These same models, which capture the agent’s viability1, can also be used for “safety enforcement”
during user control of the agent, which is a secondary theme in this proposal. This consists of

1Discussed later; briefly, a nonviable state is one in which the agent has passed the “point of no return”, where
failure or collision is no longer avoidable.

Figure 1.3: The solving of a maze using cellular automata. The proposed viability filtering of planner’s search space
strongly resembles the effect achieved by the cellular automata, in that only the (locally) feasible paths remain.
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giving the user free reign over the agent, except when this threatens to leave the model-permitted
space of operation, in which case the user-selected control action is automatically superseded by
one that does not breach the model envelope.

The areas of motion planning and control share a significant relationship. In essence, both
problems deal with searching, whether it be for a successful motion or a suitable control policy.
But while motion planning most often addresses kinematic agents under geometric constraints (i.e.,
obstacles), control problems usually deal with dynamic systems in otherwise unfettered environ-
ments. Kinodynamic motion planning is thus, in a sense, a union of the two, in that it deals
with dynamic agents under geometric constraints. Despite the prevalence of such systems, there
is remarkably little literature dealing with kinodynamic motion planning, which, together with the
lack of robustness of current methods, makes it an attractive area of research.

1.4 Proposal structure

The rest of this proposal is organized as follows. The next chapter presents previous work in the
areas of motion planning and viability. Chapter 3 proposes a variant of a popular motion planner;
this variant addresses the planner’s poor performance in highly constrained environments. Chapter
4 builds on this by equipping the planner with learned viability models which serve to curtail the
planner’s wasteful exploration of areas that are predestined to fail. Chapter 5 finally looks at how
these same learned viability models could be used for safety enforcement in user-controlled systems.

The key chapters are strongly patterned on corresponding papers. In particular, Chapters 3, 4,
and 5 were derived from [KvdP06], [KvdP07], and [KvdP04], respectively.

1.5 Proposed thesis contributions

The primary contribution of the thesis would be the extension of the RRT algorithm, the currently
best available general-purpose kinodynamic motion planner, yielding much improved operation with
more difficult agents. In particular, the thesis would address RRT’s poor performance in highly
constrained environments (resulting in “RRT-Blossom”; Chapter 3), as well as with highly unstable
or failure-prone agents (resulting in “RRT-Blossom with Viability Filtering”; Chapter 4). Figures
1.4 and 1.5 illustrate the achievable improvements with these extensions.

A related contribution would be the application of the learned viability models for safety en-
forcement in user-controlled systems, as outlined in Chapter 5. A key component of this is the
proposed method for compensating for inaccuracies and error in the learned model.
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Figure 1.4: Representative improvements in planning time; boxplots show performance under various agents for
RRT-CT (best current), RRT-Blossom (Chapter 3), and RRT-Blossom with Viability Filtering (Chapter 4).

(a) RRT-CT (b) RRT-Blossom (c) RRT-Blossom w/VF

Figure 1.5: Visual comparison of “exploration effort” for the bike for best current RRT algorithm (RRT-CT), and
our proposed variants. The viability-filtering planner on right, in particular, achieves a solution with noticeably less
effort.
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Chapter 2

Previous Work

2.1 Motion planning

As suggested earlier, motion planners can be categorized as either kinematic or kinodynamic. The
former operate solely upon the agent’s configuration q, whereas the latter operate upon the agent’s
configuration and its time derivative; this combined vector is called the agent’s state, and denoted
by x, where x = (q, q′). Thorough treatment of the general motion planning problem can be found
in [LaV06] and [Lat91], while [DW91] adopts a unified viewpoint between planning and control.

Kinematic motion planning

Kinematic planners, by virtue of addressing the simpler problem, were first to be studied, yielding
a vastly more extensive body of research today. One important class of such planners employs
potential fields or navigation functions, scalar functions erected over the search space that “lead”
the agent towards the goal. These potential fields are usually the sum of a number of simpler fields;
typically, one field attracts the agent towards the goal, while others serve as repulsive forces that
“push” the agent away from obstacles. Path planning then consists of performing gradient descent
down the aggregate manifold. Figure 2.1 illustrates the key components of this approach. Unless
stated otherwise, planning examples and figures in this proposal, including Figure 2.1, illustrate
planner operation using purely geometric paths (i.e., the agent is a kinematic point capable of
motion in arbitrary direction).

(a)

+

(b)

=

(c) (d)

Figure 2.1: Potential field planner operation: (a) the query; (b) the qgoal -attracting potential (top) and obstacle-
repulsing potential (bottom); (c) sum of potentials; (d) isoline plot of potential field, and gradient descent path.
Adapted from [Lat91], with permission.
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10 Chapter 2. Previous Work

A key weakness of said planners, typical of gradient descent methods, is that they easily get stuck
in local minima. One of the more successful of these algorithms, the Randomized Path Planner
(or RPP)[BL91], proposes a number of mechanisms to mitigate this. Firstly, it uses specially
constructed navigation functions, computed using a blend of medial axis and level-set methods,
that are free of local minima when employed with a kinematic point-mass agent without dynamics.
Nonetheless, local minima can develop during gradient descent once agent geometry is factored in;
typically, in such cases, the agent gets wedged in the surrounding obstacles, and in order to proceed
in the direction suggested by the navigation function the agent must be backed up and re-oriented.
This “nudging” is achieved using random-walks: when the planner detects that a local minimum
has been reached, the agent undergoes a series of random perturbations. It should be noted that
there is no guarantee that any particular random-walk will escape the local minimum, but the
duration of the random-walk is chosen such that there is a good probability of this happening,
based on the size and discretization of the workspace. If the random-walk fails to escape, the agent
will return to the same local minimum, and another escape attempt can be made. RPP operation
is illustrated further in Figure 2.2.

(a) (b) (c) (d)

Figure 2.2: Randomized Path Planner (RPP) operation: the first step is computation of a “navigation function”
using a combination of medial axis and level-set methods; (a) shows the function using isolines (red “X” in lower
right marks the goal), while (b) and (c) render it as a height-field, seen from different angles. Planning consists of
gradient descent down this manifold, and local minima are escaped using random-walks (d).
Figures (a)–(c) adapted from [Lat91], with permission.

An important feature of RPP which allows it to produce good results for some problems is the
use of sampling for low-cost approximation of the gradient of the potential field at a particular
point. In highly dimensional spaces computing the gradient exactly is prohibitively expensive,
rendering such potential field methods unfeasible otherwise. To some degree, this sampling trait
allows the planners to break the curse of dimensionality of the search space, and it remains a key
element of state-of-the-art planners of today.

One popular planner that exploits this trait is the Probabilistic Roadmap (PRM)[OS95]. This
approach requires a relatively expensive pre-computation step, hence is geared more for answering
multiple queries for the same static environment. As such, it will receive a much shorter treatment
in this proposal. The pre-computation consists of first populating the workspace with milestones—a
set of collision-free states of the agent, chosen uniformly from the free-space—and then constructing
its “roadmap” by connecting each milestone with a number of its closest neighbours if said con-
nection is collision-free. For simple, freely moving agents the milestones are simply connected with
straight lines, but in the general case the connections are attempted using an externally provided
“local planner”. Given such a roadmap, motion planning consists of first connecting qinit and qgoal
to the roadmap, and then finding the shortest path in the resultant graph. The solution trajectory
is obtained by concatenating the trajectories of all the edges encountered on the graph walk from
qinit to qgoal . Figure 2.3 illustrates the algorithm.
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(a) (b) (c)

Figure 2.3: The Probabilistic Roadmap (PRM); (a) the environment is uniformly sampled with a set of random
milestones; (b) each milestone is connected, where possible, with a number of nearest neighbours, yielding a roadmap;
(c) solution is found by connecting qinit and qgoal to the roadmap, and then finding the shortest path through the
graph.

The key issues with PRM are: 1) the lack of robust local motion planners for most dynamical
systems; and 2) the “narrow passage problem”. The latter refers to the difficulty of properly
capturing the topology of narrow passages with the roadmap, which is a side-effect of the stochastic
sampling of milestones. Even with a straight-line local planner one must put down a lot of (random)
milestones before a subset of them line up in a way that the narrow passage can be traversed with
a piecewise-linear curve, thus allowing the “discovery” of the passage.

The other predominant sampling-based approach to motion planning is that of the Rapidly-
exploring Random Trees (or RRTs)[LaV98, LK00]. Rather than working globally like PRM, RRT
explores the free-space in a more incremental fashion, building trees with a strong bias for diffusion.
Since the planners in the rest of this proposal all build upon RRT, we provide a more extensive
discussion of this algorithm and its variants.

The defining characteristic of RRTs, the reason for the “rapidly-exploring” moniker, is the tree
bias for always growing towards unexplored space. RRT’s operation is best illustrated using the
simplest variant, which grows a single tree rooted at the initial configuration, qinit , until a branch
reaches the goal configuration, qgoal . At each iteration the planner first picks a random, collision-
free agent configuration, qtgt , and identifies the tree node, qnear , that is nearest to it.1 The planner
then attempts to extend the tree from qnear towards qtgt , using some small time-step. For simple
agents with no constraints on q′, the potential tree edge extends directly towards qtgt . For actuated
agents, the direction is determined indirectly: the agent’s range of possible control actions are first
discretized, and from the resulting set the planner then chooses and instantiates the control action
that advances the closest to qtgt in a single time-step (without incurring a collision). These steps
are illustrated in Figure 2.4, while Algorithm 1 describes the planner with pseudocode. Figure 2.5
illustrates the structural difference between a tree where edges are grown in random directions and
an RRT where growth is biased towards unexplored space.

The above basic scheme works well for exploration of the free-space, but finding a solution is
relatively slow since the tree must “stumble” upon qgoal . Hence a very common modification in
single tree variants is to bias qtgt . That is, in some portion of iterations (e.g., 5%–10%) qtgt is set
to qgoal rather than a random configuration, making the planner more goal-oriented.

RRT-Connect[KL00], another common extension, uses multiple time-steps when creating a new
edge, rather than just a single one. That is, once qnear (and the best control action, in the actuated

1Note: we will often use the symbol q to refer to both, the agent configuration q as well as the tree node
corresponding to that configuration. This applies to all related symbols, such as qinit and qnear . Later, when agent
state replaces its configuration, an analogous situation will apply to the symbol x.
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Algorithm 1 single-tree RRT for an actuated agent
1: function query(qinit ,qgoal)
2: T ← tree(qinit)
3: while time elapsed() < MAX TIME do
4: qtgt ← random q()
5: qnew ← grow tree(T, qtgt)
6: if qnew ∧ ρ(qnew , qgoal) < ε then
7: return extract soln(qnew)

8: return failed

9: function grow tree(T ,qtgt)
10: qnear ← nearest neighbor(T, qtgt)
11: ubest ← pick ctrl(qnear, qtgt)
12: if ubest then
13: T ← T + new edge(qnear, ubest)

14: return qnew

15: function pick ctrl(q,qtgt)
16: dmin , ubest ← ρ(q, qtgt),∅
17: for u ∈ U do
18: qnew ← sim(q, u)
19: if failure(q, u, qnew) then
20: next u
21: d← ρ(qnew , qtgt)
22: if d < dmin then
23: dmin , ubest ← d, u

24: return ubest

where

• ρ(x1, x2): distance metric

• extract soln(...): constructs solution by concatenating all edge trajectories on the graph path between qinit

and qgoal .

• new edge(x, u): create new edge from state x using control input u for a single (Extend) or maximal (Connect)
number of time steps

• failure(x1, u, x2): test whether the transition from x1 to x2, using control input u, incurs a collision or
violates other global constraints

• sim(x, u): compute state of agent after application of control input u from starting state x (paper assumes a
constant time step)
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Figure 2.4: Steps of an RRT iteration: 1) randomly choose a target configuration, qtgt ; 2) find nearest tree node,
qnear ; 3) attempt to grow the tree from qnear towards qtgt , for a single time-step ε, yielding new node at qnew .
Adapted from [KL00], with permission.

agent case) has been found, the new tree edge is extended a multiple of time-steps, until either it
reaches the target, hits an obstacle, or starts receding from the target. This serves to span large
open spaces quickly, and generally works for well for agents that move in a linear fashion.

Despite these improvements, the single-tree RRT still achieves relatively mediocre performance,
and hence is rarely used. Much better results can be obtained by employing two trees[LK00]: the
first at qinit as before, and a second one at qgoal , which is grown “backwards in time” (see Figure
2.6). As the two trees grow, it is easy to see how they provide a larger and larger target area for
each other to connect to; the single tree, on the other hand, is always seeking a singular point (i.e.,
qgoal ), a much more difficult task. Algorithm 2 outlines the operation of the dual-tree approach. In
brief, on any given iteration the first tree is treated in the same manner as before: choose random
qtgt , find qnear , grow tree from qnear toward qtgt . If this results in a new tree node, qnewA , then the
second tree is grown in a similar fashion, except with qtgt = qnewA ; that is, the first tree is grown
towards a randomly chosen qtgt , yielding a new tree node qnewA , while the second tree is grown
towards qnewA . After each iteration the trees switch roles.

The RRT-Connect technique can be applied equally well to the dual-tree RRT case, either
to only one of the trees, or to both. This results in four possible variants, commonly named
RRTConCon, RRTConExt, RRTExtCon, RRTExtExt. Here “Con”, short for “connect”, refers to
the RRT-Connect method of growing edges, while “Ext”, short for “extend”, refers to the simpler,
single time-step method; in each of the variant names, the first identifier specifies the growth
method used in the qtgt -seeking stage, while the second identifier specifies that of the tree-seeking,
second stage (see Figure 3.3). RRTConCon is popular for freely-moving agents, but in some cases

Figure 2.5: On left: a tree with edges grown in random directions; on right: RRT, where each edge is biased to grow
toward unexplored space. Both trees have exactly 2000 nodes.
Reproduced from [LK99], with permission.
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Figure 2.6: RRT commonly employs two trees, one at xinit , and the other at xgoal .

Algorithm 2 dual-tree RRT (RRTExtExt, etc.)
1: function query(qinit ,qgoal)
2: Ta, Tb ← tree(qinit), tree(qgoal)
3: while time elapsed() < MAX TIME do
4: qtgt ← random q()
5: qnewA

← grow tree(Ta, qtgt)
6: if qnewA

then
7: qnewB

← grow tree(Tb, qnewA
)

8: if qnewB
then

9: if ρ(qnewA , qnewB ) < ε then
10: return extract soln(qnewA, qnewB)

11: Tb, Ta ← Ta, Tb

12: return failed

(inherits grow tree() & pick ctrl() from single-tree RRT)
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Figure 2.7: Seminal kinodynamic planner of [DXCR93]. The point agent is limited to a small set of allowed acceleration
vectors (left) which are then applied for small durations τ . The use of such (amax , τ)-bang motions results in a grid-
like discretization of agent’s state-space; right: cross-section of agent’s state-space at y = 0.
Reproduced from [DXCR93], with permission.

RRTExtCon is preferred, as it emphasizes attempting to connect the trees over exploration.
The prospect of getting better performance through the use of even more trees has been explored

in [Str04]. In this approach, whenever the planner encounters a target configuration towards which
extant trees cannot be grown, the wayward configuration is used to seed a new, local tree, one
which then takes equal part in the usual process of growth toward random targets and neighbouring
trees. Whenever two branches meet, their trees are merged, while a connection between the primal,
endpoint trees (i.e., rooted at qinit and qgoal ) signals the discovery of a solution. The benefit of
the extra, local trees is that difficult-to-reach areas of the free-space are explored earlier, from the
inside out; this is advantageous because it populates with nodes the ingress points to this difficult
area, thus making it easier to connect to that component of the free-space.

Kinodynamic motion planning

One of the earliest works to address the kinodynamic problem is [DXCR93], which concerns itself
with finding near time-optimal trajectories for a kinodynamic point mass with velocity and accel-
eration bounds. The crux of the method is the discretization of the state-space using a regular
grid (see Figure 2.7) and the subsequent use of the usual “shortest path in graph” methods to find
the near optimal trajectory. Such discretization is made possible by limiting each component of
acceleration of the agent to {−amax , 0,+amax}. Although this approach has provably good time
complexity and optimality, it suffers immensely from the curse of dimensionality, making it only
applicable to simple agents with few degrees of freedom (i.e., 3 or less).

In the simplest general case, refitting a planner for kinodynamic operation consists simply of
replacing references to agent’s configuration with ones to the agent’s state (i.e., replace q with x,
where x = (q, q′)). For example, PRM could be converted in this way, assuming an appropriate
kinodynamic local planner is also made available. Unfortunately for kinodynamic systems such local
planning is often just as difficult a problem as the global one, hence the original PRM algorithm is
rarely used in this domain.

KDP[HKLR00] is a PRM-inspired planner specifically designed for kinodynamic systems. It
bears a strong resemblance to RRT in that it is also a tree-oriented approach, but differs in its
exploration biasing strategy: rather than using a randomly chosen target state to “attract” new
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growth, the next node to be expanded is chosen probabilistically, with likelihood being inversely
proportional to the number of nearby neighbours that a node has (i.e., sparsely populated areas
are favoured).

One difficulty with KDP is that proofs of probabilistic completeness of the algorithm assume
uniform sampling of the agent’s state-space, whereas most practical implementations only uniformly
sample the agent’s control space U , which usually does not lead to the former. Frazzoli et al [FDF99,
FFD00] propose a new planner inspired by KDP that addresses this issue, but it is limited to agents
capable of coming to a “stop”, and further assumes knowledge of control policies that bring the
agent to a stop at a desired location from any arbitrary starting state. The planner is used for
real-time motion planning of a simulated small autonomous helicopter among static and dynamic
obstacles.

RRTs, on the other hand, can be easily refit for kinodynamic systems[LK99] without any loss
of generality. One issue that requires careful attention is the growth of the second tree, from xgoal :
since this tree is “grown backwards”, its trajectories must be computed by integrating the agent’s
laws of motion using a negative time step, and this distinction needs to be observed throughout
the planning process.

Although the kinodynamic RRT algorithm works well for simple systems, it tends to do poorly
with more complex agents. One of the key problems is RRT’s sensitivity to the distance metric
used to bias the exploration process: if the metric does not accurately reflect the true cost-to-go,
RRT’s performance is severely affected. [CL01b] proposes to mitigate this problem by introducing
two key changes to the algorithm: 1) that the algorithm keep track and subsequently disqualify
from consideration any attempted tree edges which result in collisions; and 2) that the collision
tendency of each node in the tree be tracked. We refer to this approach as RRT with Collision
Tendency (RRT-CT). Algorithm 3 outlines the planner in more detail. The value tracked for collison
tendency is only a lower-bound approximation: whenever an attempted edge incurs a collision, each
ancestor node’s collision tendency is increased in proportion to the edge’s relative importance to
that ancestor; thus an ancestor node’s collision tendency asymptotically approaches the ultimate
true value as the exploration of the subtree at that node completes.

2.2 Viability

Our proposed solutions to the above problems with kinodynamic planning rely on the concept of
viability, hence it is worthwhile to review here the basics of viability theory. We present only a
rudimentary introduction here; more comprehensive yet still concise introductions to this topic can
be found in [ASP04, Aub02b, Aub02a], while a more thorough treatment is provided in [Aub91].

In plain terms, viability describes whether the dynamical system’s operation is sustainable from
a given starting point, i.e., whether the system can be kept from failure. More precisely, a viable
state is guaranteed to have at least one sequence of control actions which, when applied from
said state, will keep the agent from failure (i.e., “there is a way out”). It is important to note
that viability merely indicates the existence of such sequences, but makes no claim in regard to
their frequency; there could be only one such sequence. The negative characterization is perhaps
the more familiar and intuitive: nonviable states of the system are those in which the agent has
gone “past the point of no return”, where collision or failure is no longer avoidable (but perhaps
postponable for some finite time).

A related concept to viability is reachability. We will refer to states as reachable if they can be
reached from some canonical initial state, usually xinit , the starting point of a query. A thorough
treatment of reachability is provided, for example, by [Mit02]. In the more formal terminology of
the field, these reachable states comprise the “forward reachable set” of xinit .
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Algorithm 3 RRT w/“Collision Tendency” (RRT-CT)

(inherits query() & grow tree() from single- or dual-tree RRT)

1: function nearest neighbor(τ, x)
2: dmin, nbest ←∞,∅
3: for n ∈ τ do
4: if ∃ unexpanded input out of node n then
5: r ← random(), r ∈ [0, 1]
6: if r > σ(n) then
7: d← ρ(n, x)
8: if d < dmin then
9: dmin, nbest ← d, n

10: return nbest

11: function pick ctrl(x,xtarget)
12: dmin ←∞
13: for u ∈ U do
14: if u has not been expanded for x then
15: xnew ← sim(x,u)
16: if failure(x,xnew) then
17: mark u as expanded
18: update tendencies(x,τ)
19: else
20: d← ρ(x, xnew)
21: if d < dmin then
22: dmin, ubest ← d, u

23: mark ubest as expanded
24: return ubest

25: function update tendencies(x,τ)
26: p← 1
27: while x do
28: p← p/|| U ||
29: σ(x)← σ(x) + p
30: x← parent(x)

where

• σ(n): collision tendency of node n
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(a) (b)

Figure 2.8: Toy problem for viability; (a) The Apollo Lunar Module; (b) the 1970s arcade game “Lunar Lander”

These concepts can be best illustrated with a simple toy example. “Lunar lander” is the name
of a popular video arcade game from the late 1970s (see Figure 2.8), a simple, 2D simulation of
landing an Apollo Lunar Module craft on the moon. In this example we further simplify things by
eliminating craft rotation and lateral motion, thus limiting the craft to one-dimensional displace-
ment along the vertical axis. The object of this exercise then is to softly land on the moon surface;
that is, to reach the state (z, z′) = (0, 0), subject to z ≥ 0, where z is the altitude.

A key property of this toy dynamical system is that the agent’s thrusters, and thus acceleration,
are bounded. This has two important consequences: 1) if the lander’s downward velocity grows
too large, the limited amount of thrust will be unable to sufficiently decelerate the agent before it
reaches the surface, leading to a crash; and 2) the lander cannot reach a large class of states, since
the limited thrust puts an upper bound on the achievable upward velocities for a given altitude
(and the agent cannot descend below z = 0 to “wind up”). These two phenomena correspond to
viability and reachability. Figure 2.9 illustrates the lunar lander’s state-space, and its division by
these classifications into distinct regions.

Formal description

Viability for actuated systems can be captured formally as follows. We first assume that we are
given a continuous-time dynamical system:

x′(t) = f
(
x(t), u(t)

)
, u(t) ∈ U(t) (2.1)

U(t) = g
(
x(t)

)
(2.2)

where x(t) is the system state at time t, while u(t) is the control action applied. U(t) is the set
of allowable control actions at time t, and as illustrated here, can be dependent upon the system
state, although in all our subsequent examples and test cases it is invariant of state.

Viability can only be assessed relative to some constraint. One generally defines a set K ⊂ X
of admissible states, called the viability constraint set. These are the states the agent is allowed to
assume. In most applications of viability in this proposal, K is the set of all collision-free states of
the agent.
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Figure 2.9: The viable and reachable regions of the lunar lander’s state-space. The “crash unavoidable” region is
nonviable since the downward velocity exceeds the braking power of the lander’s (bounded) thrust. The “impossible”
region is unreachable since the upward velocity exceeds what can be achieved, even if maximal thrust is applied from
altitude z = 0.

In this framework, a state is viable if there exists a sequence of control actions that can keep
the system within the admissible region K; that is, x0 is a viable state if:

x(0) = x0

∃u(t), ∀t ≥ 0, x(t) ∈ K

Finally, the viability kernel, denoted by Viab(K), is the set of all viable states under the constraint
K:

Viab(K) =
{
x0 : x(0) = x0

∧
∃u(t), ∀t ≥ 0, x(t) ∈ K

}
Thus Viab(K) ⊆ K ⊂ X.

The above definition can be easily reworked for discrete-time dynamical systems, in which

xk+1 = f(xk, uk), uk+1 ∈ Uk+1 (2.3)
Uk+1 = g(xk+1) (2.4)

where xk, uk, and Uk are the corresponding system state, control action applied, and the set of
allowable actions at the kth time-step, respectively. The viability kernel then becomes:

Viab(K) =
{
x0 : ∃{u0, u1, u2, . . . }, ∀k ∈ N, xk ∈ K

}
In the above, u(t) and uk are the control inputs to a system which is governed by an external

agency, be it a human user, if applied to an interactive system, or the motion planning algorithm,
as in our current context. In the most general sense, viability theory attempts to make statements
about systems with non-deterministic dynamics; in the systems in this proposal (and thesis) the
non-determinism comes from the user’s and motion planner’s ability to choose the control action
to apply next, which the system essentially sees as a random variable due to its relative unpre-
dictability.

Viability theory goes on to prove a number of notable results. For example, it shows that all
interesting features such as equilibria, trajectories of periodic solutions, limit sets and attractors,
if any, are all contained in the viability kernel. Alas, the theory does not, in general, provide
explicit ways to compute the viability kernels, a matter of most immediate interest to us in our
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research presented here, although a number of other works have investigated this topic. Saint-
Pierre[SP94] approaches the problem by discretizing the state-space X and control-space U , and
then in an iterative manner akin to cellular automata, refines the discrete approximation until
a steady-state is reached. The method naturally suffers from the curse of dimensionality, with
exponential growth in samples as the dimensionality of X or U grows. [CD06], on the other hand,
attempts to model the viability kernel with Support Vector Machines (SVMs). Roughly, this
method learns a (continuous-space) SVM model in parallel with each iteration of the Saint-Pierre’s
algorithm, and then performs some additional refinements. The goal of this approach is to get an
analytical approximation of the kernel, which is intended to mitigate at least the U control space
curse of dimensionality. Another recent approach[BMMZ04] models the viability kernel using a
value function of an optimal control problem, and proposes the use of ultra-bee scheme to mitigate
the approximation’s numerical diffusion due to the discontinuities of the function. Although the
work shows good empirical results, Ultra-Bee scheme currently has no convergence proofs, and is
currently limited only to 2D state-spaces.



Chapter 3

RRT-Blossom: sustained,
non-redundant exploration

The defining property of RRT is the “rapidly-exploring” aspect of its trees, yet this very feature
falters for more complex kinodynamic systems. In order to ensure sustained progress, the planner
must ensure a steady rate of tree growth, and that the new growth is not redundant. RRT falters
because it fails to meet these criteria in many kinodynamic cases. In this section we propose
modifications to RRT that directly address both of these two criteria.

3.1 Deficiencies of current RRT variants

The standard RRT algorithm, even though specifically extended to the kinodynamic setting in
[LK99], often fails to make significant progress on queries for more complex dynamical systems,
even when given large amounts of time. For example, as shown in Figure 3.1, RRT performs very
poorly with the kinodynamic bike described in section 1.2, producing little progress even after 20
minutes of computation.

One major factor contributing to RRT’s poor performance in this example is the algorithm’s
method for choosing the next tree node to explore (i.e., pick the node that is closest to a randomly
sampled target state, xtgt). This strategy grinds nearly to a halt when the tree develops a prominent
but nonviable branch: since the branch is nonviable all its evolutions are doomed to failure, while

RRT RRT-CT RRT-Blossom

Figure 3.1: Comparison of evolved tree structure for the kinodynamic bike after a set amount of time. Note: all three
algorithms use Extend operation for tree growth (i.e., all are variants of RRTExtExt).

21
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its protrusion makes it a lightning rod for expansion trials, thus leading to many wasted iterations
on futile expansion attempts. The problem is further exacerbated by RRT’s lack of memory,
especially of such previous failed attempts. A related issue that troubles RRT is the interplay of
the above node selection strategy and RRT’s requirement that, in order to be implemented, an edge
must make progress towards xtgt . For many kinodynamic systems the set of all possible outbound
trajectories out of an arbitrary node is fairly “clumped”, which leads to reduced performance if
the node is prominent and this set is oriented towards explored space. In such cases, the node will
again garner many expansion attempts, yet the orientation of the “clump” rules out any chance of
tree growth. This leads to many wasted iterations, just like with the earlier, nonviable branches.
Figure 3.2 illustrates this more clearly.

Figure 3.2: One problem with kinodynamic RRT: “clumped”, wayward evolutions. If xtgt is chosen anywhere within
the shaded area, the prominent (top-most) tree node will be chosen as xnear ; at the same time, since all its evolutions
will recede from the chosen xtgt , no tree growth will occur. The more prominent such a node, the larger the
unfavourable area (i.e., the node’s Voronoi polygon), the more planner iterations are wasted due to this node.

The RRT-CT algorithm resolves most of the above problems. Firstly, it allows edges that
recede from xtgt , yielding a much more sustained rate of exploration for difficult agents. Secondly,
it remembers which node expansion attempts led to failure, and disqualifies these from future
(redundant) consideration. Unfortunately its undiscerning admission of all xtgt -receding edges
leads to many that end up backtracking into already explored space, especially in pockets and
cul-de-sacs in the environment, wasting memory and slowing down the planner.

3.2 RRT-Blossom

In essence, RRT-CT is trading one problem for another, accepting some loss in time and space
efficiency to gain much better performance with difficult agents. It is important to note though that
the net effect is positive, in that the resultant disadvantages are smaller. RRT-Blossom[KvdP06]
constitutes a similar, successive trade-off, addressing RRT-CT’s weakness at the cost of introducing
a smaller one. It is expected that with further refinements, such as that in Chapter 4, the difficulties
can be whittled down to an insignificant level, yielding a fully robust kinodynamic motion planner.
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Figure 3.3: dual-tree RRT as a simple finite state machine (FSM)

“Potential field planner” viewpoint

The ideas behind RRT-Blossom are best exposed by first noting similarities between RRT and a
potential field planner. As described in section 2.1, the central mechanism of such planners is the
use of gradient descent over a “potential field”, typically an approximation of the distance to goal
that has been in some way modulated by the presence of obstacles. Unfortunately such methods
are frequently susceptible to getting trapped in local minima, thus necessitating some form of an
escape mechanism.

The single-tree, xgoal -biased RRT algorithm shares some basic ideas with potential field planners
when its operation is viewed on a macro scale. The xgoal -biased iterations effect a descent down a
potential field, viz. ρ(x, xgoal ), while the tree growth towards random targets in state-space acts as
a local minima escape mechanism.

The dual-tree variant of RRT can be likewise framed by viewing it in terms of a simple finite state
machine, as shown in Figure 3.3. In Algorithm 2, lines 4–5 make up the EXPLORE mode, which
behaves like an escape mechanism, while line 7 constitutes the SEEK mode, which corresponds to
gradient descent. The overall potential field planner parallel here is similar to the single-tree case,
with the difference that the potential fields encourages the trees to grow towards each other rather
than growing towards a fixed goal state.

Finally, we can think of RRT-CT in the potential-field planner context, where it introduces
changes that result in an escape mechanism akin to flood-filling of local minima. A significant
part of RRT-CT’s power comes from a modification to the control action picking mechanism, viz.
initializing1 dmin to∞, rather than to ρ(xparent , xgoal ). As pointed out earlier, the main consequence
of this change is that it allows the creation of edges which recede from their appointed target. At
first this may seem undesirable, as many such edges will regress into space already explored by
the tree, but this is not always the case (see Figure 3.4). Receding edges which do not regress
are highly beneficial since they provide tree growth in iterations which would otherwise be wasted,
thus generating a more sustained rate of tree growth, an important characteristic for a flood-fill.
Unfortunately RRT-CT has no mechanism to separate out the non-regressing edges and thus accepts
all receding edges, leading to poor performance in regression-prone cases (e.g., kinematic systems).
RRT-CT’s other, more explicit changes, namely the tracking of failed edge expansions and use of
collision tendency, do not address this problem, although they do further improve the planner’s
node generation rate (even though many of these nodes are redundant).

1cf. line 12 in Algorithm 3 vs. line 16 in Algorithm 1
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qnear

“already explored” space

qtgt

Figure 3.4: Receding edges and regression; in above RRT iteration, there are only two possible expansions (dashed)
from qnear (leftward expansion is offset downward to avoid superposition). Both recede from qtgt (i.e., they lie outside
the dotted circle), hence are rejected by RRT. Receding edges can often be useful though (green, rightward), but care
must be taken to avoid those that regresses into already-explored space (red, leftward).

Regression avoidance

The main contribution of RRT-Blossom then is to introduce a robust, local, flood-fill escape mech-
anism into RRT, similar to that in RRT-CT, but one that avoids regression into already explored
space. This flood-fill behaviour proceeds in a stochastic fashion, unlike in level-set-like methods
where the fill proceeds systematically outwards, in an exhaustive fashion; this allows for faster
escapes from deep minima. A secondary improvement is the instantiation of all eligible edges
when expanding a node2 (subject to collision and regression constraints), not just the single best
one. Although RRT-CT handles unsuccessful expansions efficiently, by ensuring they are never
re-attempted, it is wasteful with regards to the others. Specifically, after it surveys the expansions
out of a node and instantiates one of them, it then discards useful information for the remaining
collision-free expansions, such as their end-states and collision-free status. Instantiating all eligible
expansions mitigates this, and has little negative cost: in constrained regions these expansions
would eventually be instantiated anyhow, while expansive spaces are traversed quickly with few
node expansions, thus generating only negligible overhead. Also, such blossoming is more consistent
with RRT’s “rapidly-exploring” spirit.

Implementing a robust regression constraint is challenging, and is an another contribution of
our work [KvdP06]. Computing an explicit model of the portion of state-space that is considered
“already explored” is unwieldy because of issues of dimensionality, and it is furthermore difficult
to even define the volume of state-space that is “occupied” by a branch of a search tree. These
difficulties are sidestepped by using an implicit approximation that captures the desired spirit of the
term, an approximation which has been found to be highly effective: a “leaf” edge (xparent , xleaf )
is considered to be regressing if a node other than xparent is closest to xleaf :

regression : ∃x ∈ T : ρ(x, xleaf ) < ρ(xparent , xleaf )

where T is the search tree, and ρ is a distance metric. Figure 3.5 further illustrates the concept,
while Algorithm 4, the pseudocode for RRT-Blossom, shows how this test is employed.

2Hence the “blossom” moniker.
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Figure 3.5: Implementing “regression”; Left: possible expansions for a particular node; all the red expansions (dashed)
are regressing since a node other than the parent is closest to proposed leaf node (indicated with loops). Only the
single edge in green is suitable for instantiation. Right: all the expansions in the tree that do not regress for the
depicted tree state.

Interplay of viability & regression constraint

The above definition works well for simple kinematic systems, but it becomes problematic for
nonholonomic or kinodynamic systems. Figure 3.6 illustrates one such case. Here, the “left turn”
path of the car is expanded first, but all its subsequent evolutions lead to collisions. The “straight
ahead” path would be feasible, on the other hand, but unfortunately it is disallowed because
instantiating it would constitute a regression into space already explored by the “left turn” path.

The general problem is that it is possible for a nonviable edge, one that by definition cannot
be part of any solution trajectory (because it inevitably leads to failure), to block a neighbouring,
viable expansion. This is particularly detrimental when the blocked expansion lies on the critical
path, as this makes solving the query outright impossible. The solution, then, is to simply disregard
such nonviable edges when determining regression.

Unfortunately the nonviability of edges is not known ahead of time, and must therefore be
incorporated retroactively when it is discovered. This is implemented by annotating nodes with
a viability status, which is then updated as planning progresses. More specifically, each edge,
instantiated or potential, carries a viability status, one of: untried, live, dormant, or dead.
Edges that have not yet been considered for expansion are marked untried. Upon instantiation
they become live. If the expansion is disallowed due to regression, it is marked dormant. Finally,
dead edges are ones that have been found to have left viable space. Figure 3.7 shows the transitions
in greater detail.

regression
car

Figure 3.6: Interplay of viability and the regression constraint: the green (dashed) expansion is blocked by an extant
nonviable edge because instantiating it would constitute a regression. Since the green edge is essential to any solution,
it is now impossible for the planner to succeed.
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Algorithm 4 RRT-blossom

(inherits query() from dual-tree RRT)

1: function grow tree(τ ,xtarget)
2: xnear ← nearest neighbor(τ, xtarget)
3: xnew ← node blossom(xnear, xtarget, τ)
4: return xnew

5: function node blossom(x,xtarget,τ)
6: for u ∈ U do
7: xnew ← sim(x, u)
8: if failure(x, u, xnew) then
9: next u

10: if regression(x, xnew, τ) then
11: next u
12: τ ← τ + new edge(x, u)

13: return the new node closest to xtarget

14: function regression(xparent, xnew, τ)
15: for node n ∈ τ do
16: if ρ(n, xnew) < ρ(xparent, xnew) then
17: return True
18: return False

Since changing the status of an edge may precipitate a change in the parent, status changes
must be propagated up the tree. This is done by traveling up the parent hierarchy towards the root
node, re-evaluating the status of each edge passed. The process stops when root node is reached,
or when a re-evaluation results in no change of status.

Dormant deadlock

Despite these measures it is still possible for the planner to become unduly stuck. This occurs
when all paths towards the goal, usually narrow choke-points, have been cut off by older, lengthier
branches, ones which cannot explore the passages, even though they pass the closest to them.
Figure 3.8 shows an example.

Fortunately these occasions are easily identified and mitigated. When the remaining accessible
free-space has been exhausted, the dormant condition starts “backing up” the tree towards the root

untried

live

dead

dormant
or child woke up

regression

START collision

instantiation children all dead

all children dormant

blocking node died

Figure 3.7: Progression of the viability status of an edge
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node, eventually reaching it once all other lines of exploration have been exhausted. This signals
the deadlock to the planner, which then allows the very next expansion attempt to disregard the
regression constraint. In practice this works well, and more importantly, it has no impact on queries
unaffected by this issue.

3.3 Results

This section presents a subset of our results; the thesis will present additional systems (also, see
[KvdP06]). In particular, Figure 3.9 shows a box-and-whisker plot3 (or “boxplot”) of the runtimes
for RRT-CT and the proposed RRT-Blossom algorithm when answering a query for the kinodynamic
bike; standard RRT was not included in the plot as it failed to make any significant progress in the
allotted time (about 20 minutes), let alone find a solution. Figure 3.1, presented at beginning of
chapter, compares the structure of the evolved trees under the three algorithms (in the same time
span). RRT’s clear lack of progress is very prominent, as is RRT-CT’s problem with re-exploration
of the area bordering the central separating dividing wall and pockets therein. It should be noted
that the RRT-Blossom tree structure presented is that at the moment of solution discovery, and
hence represents work over a much shorter time span than that of the other two algorithms which
ran the full allotted duration.

A more complete discussion of RRT-Blossom will be presented in the thesis, but it is worth
making a few key observations here. As a byproduct of its operation, RRT-Blossom can often
establish the reachability or viability of the states it encounters (e.g., any state encountered by a
tree is obviously reachable from its root, while any state whose progeny is discovered to always lead
to collision is clearly nonviable). This presents a valuable data source when later on we require
training samples for viability and reachability models.

As stated earlier, the primary goal of RRT-Blossom is to maintain efficient and rapid rate of
exploration, despite the difficulties presented by kinodynamic systems, but it achieves this goal only
partially: although it largely prevents re-exploration in the live and dormant parts of the tree, it
fails to do so for the dead branches. In particularly difficult environments it is common for RRT-
Blossom to explore and re-explore prominent nonviable regions with numerous (dead) branches.
This is a direct consequence of the design decision to ignore dead branches when determining
regression: as each attempt at exploration of such nonviable regions is blind and unhindered by
the multitude of dead branches there, it proceeds along expected lines, and is shortly found to be

3The dot indicates the median, while the box extends from the first to the third quartile. The “whiskers” extend
to the furthest sample at most 1.5 times the inter-quartile range from the box. Samples beyond this are marked with
empty circles and are considered “outliers”.
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Figure 3.8: dormant deadlock: a viable branch may cutoff access to a critical passage without being able to explore
it itself. This limits the planner’s exploration to the “fenced off” area, and once this is exhausted, the remaining
non-dead branches are locked in a cycle, mutually blocking each other’s way.
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Figure 3.9: Algorithm runtimes for the kinodynamic bike, in seconds, for various test environments. Samples per
boxplot: 40.

dead itself, thus adding to the pile, to be likewise ignored by the next re-exploration attempt.
A number of stochastic remedies for this weakness are possible, but none of these provides a

solid and conclusive solution, one that does not introduce further problems of its own. A foolproof
solution would be to recognize ahead of time the nonviable regions of state-space. The motion
planner could then simply ignore and avoid exploring those parts, thus completely side-stepping
the above issue. Such viability precognition is the subject of the research presented in the following
chapter.



Chapter 4

Motion planning with viability models

As indicated in the previous chapter, the key remaining weakness of RRT-Blossom is its inability to
prevent re-exploration in nonviable areas, which is doubly wasteful since these areas normally can
never even lead to a solution. The most effective way to correct this is to predict the nonviable areas
a priori and simply avoid exploring them, thus cleanly sidestepping the problem. This optimization
is not limited to RRT-Blossom; almost any kinodynamic planner could benefit greatly from such
search-space culling, leading to “smarter planning”.

Viability can be modeled in a number of ways. The next chapter, Chapter 5, looks at modeling
viability globally, whereby the models are parametrized by the agent’s global state x, and are
therefore tightly bound to the environment on which they were trained. In this chapter we look
at local viability models, which are essentially parametrized by the local context of the agent.
Such local models are usually preferable since they are applicable to a wider range of similar-yet-
different environments, not just the original one used to train the model. They are also better
suited for dynamic environments, since snapshots of the environment at different time points can
be alternatively viewed as a set of static, similar-yet-different environments. Local models also
often capture the agent’s viability in a more efficient and compact form.

One way to implement such locally-parametrized viability models is to first think in terms of
the combined state of the agent and the environment, and then to localize it by using a set of
agent-mounted virtual sensors. A straight-forward example for a bike would be to outfit it with a
spread of three sensors, oriented at {−α, 0,+α} degrees relative to the bike’s forward direction (see
Figure 4.1). Such localized perception of the system state has been explored in control literature,
yielding interesting and robust localized behaviour-based AI and control [Bra84, Bro86, Ark98].

In the subsequent sections we formalize the combined system state, the virtual sensors, and
the resultant localized state of the system. Next, we describe the framework and implementation
details of such localized viability models, as well as how to implement filtering in a planner using
these models. This is followed by sample results, as well as a discussion of unresolved issues and
open problems.

4.1 Sensing and situation encoding

Traditionally motion planners treat x, the state of the agent, and e, that of the environment1, as
separate entities, and only bring them together during collision checks. This is an unnecessarily
limiting dichotomy; often it is more convenient to work with the combined, full system state, which
we will denote with x+ = (x, e). The corresponding state spaces can be analogously combined: if

1We construe this state to contain enough information about the environment’s geometry that, together with x,
it is sufficient to perform a collision check. For dynamic environments e is thus time-varying.
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x ∈ X and e ∈ E then x+∈ X+, and X+ = X × E .
A planner can be endowed with “sight” by fitting it with a number of sensors that perceive

the world relative to the subject. As an example, Figure 4.1 shows the sensors that were used in
our experiments. More formally, a sensor σ is a function which maps the subject’s state and the
environment geometry to a scalar value:

σ(x+) : X+→ R

For a particular system state x+∈ X+, one can compute all the sensor values and concatenate them
into a single vector,

s =
(
σ1(x+), σ2(x+), . . .

)
, s ∈ S

which we refer to as the sensory state. The set of all possible sensory states forms the sensory space
S.

It is generally unproductive to learn or reason about an agent’s behaviour using the full system
state x+. Acquired knowledge that is parameterized using such global descriptors does not generalize
well to other, similar-but-different environments. The sensory state s, on the other hand, when
augmented with relevant variables describing the agent’s internal state, can be seen as projecting x+

into a local description that is usually more generalizable. Formally, we define the locally situated
state of the agent

λ = (s, x̂), λ ∈ Λ

where x̂ ⊂ x are the relevant state variables of the agent that are otherwise not accounted for
in the sensory state s, and Λ is the locally situated state space. At most, x̂ is the position- and
orientation-independent portion of the agent’s state, but often smaller.2

For example, in the dynamic bike system,

x = (p, θ, φ, φ′)
s = (σL, σF , σR)
λ = (σL, σF , σR, φ, φ′)

where p is bike’s position, θ is its orientation, and phi is its lean angle, while σL, σF , σR are the
three sensor readings.

2For some agents it is useful to post-process x̂, such that λ = (s, f(x̂)), in order to reduce its dimensionality or
make it more amenable to learning.

Figure 4.1: Virtual sensors for various agents. Lines indicate (virtual) agent-mounted range sensors used in planning
(dotted lines indicate sensors used with xgoal tree). They are discussed in §4.3.
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4.2 Modeling local viability

The locally situated state space Λ provides a more compact and general projection of the combined
agent-environment state. By taking note of situated states that are encountered in successful so-
lution trajectories, the planner can build a large pool of exemplars, its experience of “auspicious”
(i.e., good) situations. This knowledge can then be leveraged during further planning by discour-
aging the planner from exploring regions where the density of such auspicious samples is low or
non-existent, since any situation which significantly strays from past experience is likely to do so
precisely because it does not lead to success, and hence cannot aid in finding a solution.

Viability

The notion of a situated state being ‘good’ or ‘bad’ correlates strongly with whether the corre-
sponding system state x+ is viable. In this context, our approach limits planner exploration to
viable space. The underlying idea is that, since it is impossible for a nonviable state to lead to
a viable one, then any encountered nonviable states cannot contribute to a solution, and hence
represent wasted effort. The exceptional case where xgoal is itself nonviable is treated later on.

Our proposed viability filtering of planner exploration requires a model of the subject’s viability,
which we derive from the example viable states collected from previously planned motions. The
planner trains (and then later consults) a viability oracle

Ωv(λ) : Λ→ {true, false}

where true and false correspond to “viable” and “nonviable” labels, respectively.
The oracle has two sources of prediction error: modeling error and limitations in the sensors’

ability to disambiguate states. The first is a result of either insufficient training samples or poor
choice in training procedure parameters, and is easily corrected. The second type of error is inherent
in the collected data, and is much harder to fix. The problem stems from the agent’s set of sensors
being unable to disambiguate between pairs of system states in certain situations, one viable and
one nonviable, and as a result mapping them both to the same locally situated state λ. Since the
oracle is deterministic, it must therefore always predict wrong for one of these problematic states.
Section 4.4 discusses these errors further, and their consequences.

Implementation

The first step in implementing a planner with viability filtering is the collection of sample viable
states. This can be done in a number of ways. An ideal approach would rely on “bootstrapping”:
the planner starts out with no viability knowledge but progressively builds a viability model by
scanning its own solutions for novel viability states and incorporating them into the oracle. However,
such online bootstrapping is problematic as we describe in section 4.4. Instead, we collect samples
of viable states from very long random-walk trajectories created by applying a random control
action at each time step and backtracking whenever the agent encounters failure.

Only positive samples of viability are collected. Nonviable states are not collected since nonvi-
ability is far more difficult to determine: to prove a state is viable it is sufficient to demonstrate
a single viable trajectory out of it; to prove nonviability one must show that all trajectories out
of the state necessarily end in collision. But proving viability requires a concession since a “viable
trajectory” is one that can self-perpetuate indefinitely, and thus is not something easy to show. We
thus adopt a time horizon in our viability deliberations (e.g., 10s in our implementation), such that
any state which supports a collision-free trajectory longer than this duration is deemed viable, with
the expectation that most failure modes of the subject are confined to durations shorter than the
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time horizon. In our experience, any error (i.e., contamination of experience pool with nonviable
states) introduced with this approximation is insignificant in relation to other sources of error in
our approach.

Once a sufficient number of samples have been collected, the oracle can be trained. Since the
collected samples all belong to the same class (i.e., the “viable” set), this is naturally a one-class
classification problem. We use the one-class classifier in the excellent libSVM[CL01a] library.

Given a trained viability oracle, it is trivial to instrument a planner with viability-filtering: one
merely replaces the default call to a collision or failure checking routine, named is collision()
here, with a call to is nonviable():

Algorithm 5 Function is nonviable(x, e)
if is collision(x, e) then

return True
s← σ1(x, e), σ2(x, e), . . .
x̂←extract internal state(x)
λ← (s, x̂)
return ¬ Ωv (λ)

The function is nonviable() still calls is collision() since usually the viability model will
not be perfect, thus if used by itself, could occasionally admit an in-collision state.

Single-tree considerations

Given our finite time-horizon definition of viability, any state in the sample datasets (i.e., prior
successful solution trajectories) that is followed by one time-horizon’s worth of motion (e.g., 10s)
is deemed to be viable. Thus the subset of viable states is readily extracted by discarding one
time-horizon’s worth of data from the end of every training trajectory in the datasets.

A related issue is that a single-tree planner (i.e., one using only forward simulation) will be
unable to find a solution if xgoal is itself nonviable. This is because the planner will be actively
deterred by the viability filter from completing the last leg of any solution. Since this is not an issue
in the more common, dual-tree planner approach, we forgo exploring solutions to this problem.

Dual-tree considerations

In dual-tree planners, the xgoal tree is usually built using reverse-time simulation of system dy-
namics. Such trees require some obvious modifications to our filtering approach. Since the subject
generally moves “backwards” in reverse-time, it is necessary to flip the sensor orientation front-to-
back (see dotted lines in Figure 4.1). This further implies that reverse-time trees need to build and
use their own oracle, Ωvrev , based on data from this “flipped” sensor set. The resulting oracle mod-
els viability in reverse-time, which is equivalent to modeling reachability for a forward-simulation
setting (see Figure 2.9), thus requiring that training trajectories be trimmed from the front end
rather than the tail.

The dual-tree approach sidesteps the single-tree problem of a nonviable xgoal . This ceases to be
an issue with two trees since a solution requires only a tree-tree connection, not a tree-node one.
That is, the xinit tree, Tinit , no longer needs to reach xgoal ; it only needs to reach any node in the
xgoal tree, Tgoal , a much larger target. Analogously, xinit does not have to lie in reachable space
since Tgoal need only reach any node in the tree Tinit . The only consequence of this is that the two
trees may only meet in space which is both, viable and reachable, but this does not seem to have
any noteworthy impact on the resulting solutions.
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complex rooms-525 rooms-IKEA

Figure 4.2: Example problem environments tested.

4.3 Results

Agents & environments

We apply the viability filtering method to three agents. Only the forward-time sensors are described
here; for the reverse-time trees the logical analogues are used. Both sensor sets are illustrated in
Figure 4.1, while Figure 4.2 depicts the environments used in the experiments. This section also
uses the following notation: p refers to the subject’s 2D position in the environment; U refers to
the subject’s control input space, the set of discrete control actions allowed.

The “inertial point” robot is a point-mass with inertia and has four constant-force thrusters
mounted in the four cardinal directions. During operation the agent is required to have at all times
one, and only one of these thrusters on. The agent has upper and lower bounds on its velocity.3

The subject’s state, control actions, sensory state, and locally situated state are:

x = (p, p′) s = σp′

U = {N ,S, E ,W} λ = (σp′ , ‖p′‖)

where σp′ measures the distance from agent to the nearest obstacle along the velocity vector p′.
The non-holonomic car used is very similar to that in [KvdP06], but less maneuverable, with a

smaller maximum steering angle ψmax . The relevant parameters are:

x = (p, θ) s = (σLwh
, σF , σRwh

)
U = {−ψmax , 0, ψmax} λ = (σLwh

, σF , σRwh
)

where θ is the car’s orientation, σF is a forward-facing rangefinder, while σLwh
and σRwh

are the left
and right “whiskers”. A whisker returns the distance to the environment along a particular path.
It can be useful to consider curved whisker-paths for robots when this reflects the nature of their
motion. In practice, we approximate such curved paths using a small set (n = 8) of straight line
segments for computational efficiency. The car’s whiskers correspond to the two extremal steering
actions applied for the duration of a 180◦ turn, as shown in Figure 4.1.

The last and most complex subject is the dynamic bike model from [KvdP06], with the following
parametrization:

x = (p, θ, φ, φ′) s = (σL, σF , σR) λ = (σL, σF , σR, φ, φ′)

U = {−ψmax ,−ψmax

2 , 0, ψmax

2 , ψmax}
3A small lower bound was found useful in expediting the planning process with all planners. Without it planners

spent much time populating the free-space with very dense subtrees rife with near-zero velocity nodes, a consequence
of the ease with which antagonistic thruster pairs can cancel out each other’s accelerations.
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Figure 4.3: Box-and-whisker plots of planning time and required number of iterations for “complex” environment.
The x-axes are logarithmic to enlarge regions of detail; otherwise egregious outliers tend to marginalize the area of
interest.

where θ is the bike’s orientation, φ its lean angle, σF is again the forward-facing rangefinder, while
σL and σR are rangefinders deflected by 30◦ left and right, respectively.

Implementation details

The implementation was done using a test platform written in Python 2.4, on a Pentium IV
2.4GHz Linux machine (kernel 2.6). The base planning algorithm used was the dual-tree RRT-
Blossom presented in [KvdP06]. To partially offset the slower speed of an interpreted language
a number of optimized modules were used: “psyco”, the C-implemented libSVM library (through
the accompanying Python bindings), “scipy”, and other C-implemented modules of mathematical
nature. Collision checking was done using a naive Python implementation.

The SVM learning process is straight-forward. Prior to learning, the training samples λ ∈ Λ are
first column-standardized4, and then further scaled in some of the dimensions to give those features
more “resolution”. Radial Basis Function (RBF) kernel is used, usually with γ ∈ {0.5, 1, 2}, while
ν ∈ {0.005, 0.01}.

Performance evaluation

Table 4.1 summarizes the numerical findings. The labels “CT”, “Blossom”, and “BlossomVF” refer
respectively to RRT-CT[CL01b], RRT-Blossom[KvdP06] and our present algorithm (i.e., RRT-
Blossom with Viability Filtering). The values are averages over 20 runs for RRT-Blossom and
RRT-Blossom/VF, and over 10 runs for RRT-CT. Figure 4.3 further details the results for the

4λi ← (λi − µi)/σi, where λi is the i’th coordinate of vector λ, and µi and σi are the corresponding mean and
standard deviation, respectively.
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RRT-CT RRT-Blossom RRT-Blossom w/VF

Figure 4.4: Visual comparison of tree density and structure for the bike with various RRT variants. The proposed
viability-filtering planner (on right) achieves a solution with noticeably less effort.

RRT-Blossom RRT-Blossom w/VF

Figure 4.5: Magnified view of tree structures for the bike in a more difficult environment. The filtering planner (on
right) conspicuously avoids probing the corners and consists almost exclusively of viable trajectories.

“complex” environment using box-and-whisker5 plots for “time taken” and “number of iterations
expended”; the plot for “number of nodes created” closely mirrors that for iterations, hence was
not included. Finally Figures 4.4 and 4.5 illustrate the effect that the viability filtering has on tree
structure.

It is important to note that each agent uses the same viability and reachability models for all
three environments. These models were all trained on data from the “complex” environment, which
largely explains why the gains in that environment are the most dramatic (shaded row in Table
4.1). At the same time, it is encouraging to see that the models are still effective when applied to
other environments. The diminished gains in “non-native” environments are a consequence of the
sensors’ perceptual limits introducing environment-specific artifacts into the learned model, and
such artifacts are not generally transferrable.

The planning algorithms can be compared on runtime alone, but it is more instructive to
include the other columns in the comparison since they present a clearer picture of the reduction in

5The dot indicates the median, while the box extends from the first to the third quartile. The “whiskers” extend
to the furthest sample at most 1.5 times the inter-quartile range from the box. Samples beyond this are marked with
empty circles and commonly considered “outliers”.
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Figure 4.6: Amount of viability filtering as a function of model error.

planning effort. The time column presents these gains in a diluted form, since it also incorporates
time consumed in computing sensor values and querying the oracle, both of which could likely be
significantly improved in an optimized implementation.

4.4 Discussion

Choice of sensors

The benefit of viability filtering is directly tied to the net balance of work saved (skipping exploration
of futile branches) minus extra work incurred (computing sensor values and consulting the oracle).
It is thus important, as stated earlier, to find sensors that are relatively cheap to compute, yet at the
same time particularly adept at capturing viability-relevant attributes of the situation. Excessive
emphasis of the computational cost can be misleading, however. For more difficult and failure-prone
dynamical systems the potential gains of filtering can be so high as to justify the use of moderately
expensive sensors. For example, it is far cheaper to compute the sensory state of a car outfitted
with three linear rangefinders, in place of the whiskers, but this produces poorer results, despite
the much reduced sensor computation time.

Consequences of oracle error

Modeling error in the viability oracle can be either underinclusive (false negatives; viable states
labeled as nonviable) or overinclusive (false positives; nonviable states labeled as viable). An
underinclusive model restricts planner exploration more than it ought to. Although this results
in a smaller search space, and consequently shorter planning times, it is detrimental in highly
constrained environments since essential bottlenecks are easily made impassable when classified as
nonviable. Overinclusive models, on the other hand, diminish the amount of filtering of the search
space, causing the planner to gradually regress into the host planning algorithm (i.e., the algorithm
without filtering) as this error increases. In general, the amount of viability filtering is a function
of model error, and spans a continuous spectrum as illustrated in Figure 4.6.

Bootstrapping & scarcity of samples

There are two key issues with bootstrapping. First, since viability is modeled using a one-class
classifier, which generally attempts to wrap as tight a boundary as possible around the training
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samples, and since there would be very few samples in the initial stages of bootstrapping, it is clear
that the model would be heavily underinclusive, leading to severely excessive filtering. Even if the
planner manages to answer a query within such exacting constraints, the solution will necessarily
consist only of states which comply with the current model; the filtering operation thus prevents
the discovery of novel samples.

Both problems can likely be overcome by stochastically phasing-in the viability filtering. That
is, filtering could be applied only to iterations in which r > Φ, where r ∈ [0, 1] is a random variable,
and Φ ∈ [0, 1] is a phase-in parameter that increases as the viability model fills out. The model’s
maturity could perhaps be gauged by the inverse of the rate at which novel samples are encoun-
tered. The general problem is similar to that of exploration-exploitation tradeoffs encountered in
reinforcement learning.

It is hard to characterize the number of samples required to adequately capture the viable
region. In general, the model grows only when novel samples are encountered, ones that lie outside
current model bounds; the rate of growth is directly tied to the rate at which such samples appear,
as well as the degree of their novelty. The best one can do then in characterizing the adequate
sample size is by doing so in terms of a threshold value on the rate of appearance of novel samples
(i.e., one has an adequate model when the novel-sample rate falls below threshold).6

Oracle transferability

As the results show, a viability model can be effective in environments other than the one that
was used in training, but there are limits. How well a model transfers is dependent on the degree
to which the environments are similar in character and structure. For example, a model trained
in wide open spaces will do poorly in highly constrained environments (and vice versa) since the
model will mostly span regions of Λ with large sensor values, whereas the latter environment will
generally constrain agent operation to the vicinity of Λ’s origin (i.e., all sensors will tend to have low
values). The obvious remedy to counter such oracle over-specialization is to train them on sample
pools obtained from a variety of dissimilar environments. Initial experiments in such compositing
of training data for the car have yielded good results.

6This is still not very general, as it assumes that the training samples are drawn from a uniform distribution over
Λ, which is usually not the case.



Chapter 5

Safety enforcement with viability
models

Many user-controlled vehicles and systems (e.g., cars, helicopters, airplanes, etc.) are susceptible to
particularly dangerous failures (e.g., collision), and hence any form of automatic safety assurance
would be highly desirable in these systems. Ideally such a mechanism should be minimally intrusive,
overriding the user’s actions only if they lead to unavoidable failure. The earlier discussed viability
models are particularly suitable for this purpose. Specifically, the safety enforcement approach
proposed in this chapter gives the user free reign over the agent, except in instances where this
would cause the agent to leave viable space; in those cases the mechanism overrides the user’s input
with an alternate control action that does not breach the “viability envelope”. At least one such
action must, by definition, always exist for a viable state.

A sample implementation for a car can be seen in Figures 5.1 and 5.2. In the scenario pictured
the user is in fact steering with the explicit purpose of leaving the track (see vk in Figure 5.2), but
is overruled (uk) when necessary.

Since such safety enforcement only activates near the boundaries of the viability kernel Viab(K),
this is where most of our attention will be focussed. In this chapter we will refer to this boundary
as the “viability envelope”, a term inspired by common usage (e.g., the “flight envelope”, “pushing
the envelope”, etc). We sometimes also refer to this as the “control envelope” since a “viable” state
is also called “controllable” (in the field of control).

Related safety boundary problems have been investigated in [Mit02], where backward reachable

Figure 5.1: A car constrained to stay on the track; see Fig.5.2 for plot of corresponding control inputs.

39
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Figure 5.2: Plot of user’s desired steering angle (vk; red, smooth), actual steering applied (uk; blue, discrete), and the

viability of steering angles through time (control actions (u ∈ Û) leading to nonviable states are shaded pale green)
for the simulation run shown in Fig.5.1.

states for an arbitrary target set are computed using a time dependent Hamilton-Jacobi-Isaacs
(HJI) partial differential equation (PDE). Such backward reachable sets are, for example, used to
find the “capture region” for two airplanes in the classical “game of two identical vehicles”, where
one is the evader and the other the pursuer. This capture region has safety implications outside the
toy example: if a real plane finds itself within the capture region of another, it means there exists
a sequence of control actions for the first airplane, which could be potentially executed due to pilot
error, that can lead to collision, regardless of what the second pilot does; for maximum safety the
airplanes should thus stay out of each other’s capture regions.

In this chapter we model viability globally, in terms of the agent’s state x. Such viability models
can be obtained from, for example, exhaustive runs of RRT-Blossom (dead nodes correspond to
nonviable states), or RRT-CT (nodes with a collision tendency of 1 correspond to nonviable states),
through appropriate application of one-class or similar classifiers. Safety enforcement could also
be achieved using localized, perception-based viability models, like those in the previous chapter,
but we consider this to be outside the scope of this proposal and thesis. Although global viability
models are only relevant to the static environments on which they were trained, this still admits a
large class of applications. For example, such global models might be used in manufacturing and
assembly plants to moderate the motion of robots (e.g., “Puma” arms) in what are essentially static,
known environments. This could allow greater freedom and more dynamic motions, compared to
those derived in a purely kinematic safety framework.

The rest of the chapter proceeds as follows. First, we address the problem of containing the
agent state to within the envelope, which may contain some error. Next, the modeling of viability
using a Nearest Neighbour classifier is proposed, for reasons of speed and simplicity, and a number
of useful adjustments due to this are discussed. This is followed by additional implementation
details, and the chapter ends with presentation of some results.

5.1 Containment

Single-step containment

The simplest strategy for ensuring that the state stays within the viable region, Xin , is to prevent
an exit the instant it is about to occur. This can be achieved by giving the user full reign until
such time, and then simply overriding the unsafe control input with a safe one. Within a discrete
time framework, the control strategy can be formalized as

uk =
{

vk if xk+1 = F (xk, vk) ∈ Xin

N(xk, vk) otherwise
(5.1)

where uk is the control input applied at time step k, vk is the control input the user requested,
xk ∈ X is the system’s state, F is a function that embodies the system dynamics in a discrete time
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T 1
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T 2
h

Figure 5.3: A larger time horizon allows milder corrections. Above, the driver on the left has more time and space
to maneuver to avoid the obstacle, and so is able to use a gentler turn. In general, using a larger horizon does not
preclude the use of the shorter control policy, hence it is guaranteed, at the very least, to do no worse.

setting, so that xk+1 = F (xk, uk), and N is a function that returns an appropriate, safe control
input. It should be noted that since xk ∈ Xin , at least one such safe control is guaranteed to exist.
Also, since it is desirable to limit the system’s intrusiveness, N should return the safe control input
nearest to vk.

Multi-step containment

The above method has one undesirable property: it produces severe corrections. For a user con-
trolling the system, the experience of having control abruptly torn from the their hands is likely
to be disorienting and frustrating. It also can have adverse effects if the model of Xin is inexact.
This can be mitigated by responding earlier to upcoming envelope breaches, by testing multiple
subsequent time steps, instead of just one. As Fig. 5.3 illustrates, using a larger time horizon (Th)
generally leads to milder corrections. The desired magnitude of the horizon is clearly task- and
system-dependent, although there are some inherent and natural upper bounds. For example, it
makes little sense for a car to be concerned with a turn in the road that is over an hour away. It
is worth noting that, for the most part, the time horizon’s magnitude is driven by human response
times and mental acuity, rather than by the complexity or particulars of the physical system being
controlled.

In the multi-step approach, the user is given free reign until their control input leads to a
breach within the time horizon, at which time the input is automatically supplanted by a safe
alternative. The latter is chosen by extrapolating state trajectories for all constant-valued1 control
inputs available, up to Th into the future, and selecting the best candidate. Although control is
still usurped from the user, the effect is significantly milder. An additional benefit of the multi-step
approach is that the information on temporal breach proximity can be fortuitously used elsewhere,
for example in haptic guidance, in mapping control inputs to meaningful feedback levels.

The concept of temporal proximity of a breach figures prominently in our work, so it is helpful
to introduce a concise notation for it. Thus, let Teb(x, u) denote the time to envelope breach for a
control input u, if the system is initially in state x. If u causes a breach within the time horizon,
then 0 ≤ Teb(x, u) ≤ Th; if not, it is convenient to let Teb(x, u) = +∞.

Using Teb we can now fully characterize our online algorithm as follows. The method runs in
1This assumption embodies the generalized inertia principle from viability theory. In our method it serves as the

best guess of user’s future input.
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one of four modes of operation, based on the assessed meta-state of the system:

L1: Teb(xk, vk) > Th
L2: Teb(xk, vk) <= Th,

and ∃u ∈ U : Teb(xk, u) > Th
L3: ∀u ∈ U : Teb(xk, u) <= Th,

and xk ∈ Xin

L4: xk ∈ Xout

The corresponding applied (corrected) control input is then given by

uk =


vk if L1

B(xk, vk) if L2
arg max
u∈Ubf

Teb(xk, u) if L3

N/A if L4

(5.2)

where Ubf is a set-valued function which describes the set of constant-valued control inputs which are
breach-free for a given state (i.e., Ubf (xk) ⊆ U), and B is a function that picks an appropriate, safe
control (related to the earlier N(xk, vk); discussed later), biased in some way by the user’s control
input, vk. It should be noted that whenever we refer to any control or trajectory as “breach-free”,
we implicitly mean “. . . within Th”.

In brief, the four modes represent progressive levels of severity of the system meta-state. L1
and L2 constitute normal operation, while L3 and L4 correspond to crisis handling modes. In
particular, L1 corresponds to the most benign case, where the user’s control input vk does not
breach the envelope within Th, and hence is applied as is. In L2 the user’s input does lead to a
breach, but other values exist that do not; an appropriate input is chosen from among these. In
L3 all the control inputs lead to a breach. Since xk ∈ Xin , an achievable breach-free control policy
is guaranteed to exist, but in this case it will involve time-varying control inputs. Choosing the
control with the largest Teb is likely to maximize the chances that the system will track, at least
initially, one of these desired non-constant inputs, although this is not guaranteed. Finally, in L4,
the system state is already outside the envelope. No control law is provided for this case as it does
not occur with analytic, exact envelopes; it is listed here for completeness, and plays a greater role
in further sections.

5.2 Practical approximations

The framework, as outlined above, is difficult to implement, especially in an interactive setting.
This section presents the approximations which make this goal achievable.

Discretization of U

A recurring problem throughout the framework is the need to search all of U for some desired control
input, or performing a computation on each of its members. A simple remedy is to discretize U .
We thus define Û as the set of controls uniformly sampled from U , and use this subset wherever U
is called for. This then, for example, allows direct computation of the “nearest safe input” function
N , which can now be formally defined as

N(xk, vk) = arg min
u∈Ûbf

|u− vk| (5.3)
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where Ûbf (xk) ⊆ Û is the discretized equivalent of Ubf (xk). One can now also easily establish the
system’s mode (i.e., ∈ {L1, L2, L3, L4}), since Teb has to be computed only for a finite set of control
inputs.

The size of Û is chosen to be as small as possible to reduce computational load, but large
enough so that under most circumstances it captures at least one breach-free input. For simple
systems (e.g., those amenable to bang-bang control) the discretization can be very sparse, since
either the minimal or maximal input is frequently breach-free. For complex systems, on the other
hand, even very dense discretizations can sometimes fail to produce a suitable candidate, especially
if the controllable subset of U is small and inconveniently distributed. This carries important
repercussions, most principally that the L3 policy of setting uk to the control with the largest Teb ,
as shown in (5.2), likely becomes ineffective then, and admits breaches. The best one can do in this
case is to treat the situation more severely, applying the L4 control law instead, which we discuss
in the next section.

Approximate envelopes

Analytic descriptions of the viability envelopes can usually only be obtained for the simplest of
systems. For more complex systems the envelope may be approximated through some form of
empirical sampling of the state space, and the use of classification methods from machine learning
to infer the controllability of the system for arbitrary query states. We have explored the use
of both, Support Vector Machines (SVM) and Nearest Neighbour (NN) techniques, and found
the latter to be preferable for reasons of speed and simplicity, which make it more amenable to
application-specific customization and extension.

In general then, the envelope approximation is captured using a NN classifier

NN (x) =

 1 if min
z∈X̂in

|x− z| ≤ min
z∈X̂out

|x− z|

0 otherwise
(5.4)

where X̂in and X̂out are sets of samples which are known to be inside and outside the envelope,
respectively (i.e., viable and nonviable samples, respectively). These sets are obtained in an off-line
pre-computation step, as detailed in the following section. Fig. 5.4 shows an example of a part of
a viability envelope that was computed for a 2D dynamical system.

By virtue of being approximations, these envelopes will under- and over-approximate at various
points bordering the true envelope, leading to false negatives (NN (x) = 0 when x ∈ Xin) and false
positives (NN (x) = 1 when x ∈ Xout). The former is less of a problem than the latter since marking
extra regions of state-space as uncontrollable merely results in a more conservative envelope. The
key problem is the presence of the false positives, which can deceive the system into unknowingly
entering Xout . That is, they make it possible to enter the L4 mode.

If confronted with the unavoidability of failure (L4 mode), we choose to minimize a metric of
the failure’s severity. This is done by selecting the “least detrimental” control input, one which
causes the system to spend the least amount of time in Xout . Because the time spent in Xout for
any input may be arbitrarily large, the search for envelope re-entries needs to be bounded using a
suitable criterion.

A complementary measure one may take is to use a conservative envelope, one which errs on
the side of safety when placing the boundary. We have not yet explored any methods for doing this,
but a straight-forward one would be to shrink the original envelope by a small percentage. The
benefit of this is that any shallow breach of this envelope, such as given by the least-detrimental
criterion above, will likely not incur a breach of the true envelope, thus maintaining system safety.
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z

uk

vk

dz
dt

Xin

Xout

xk

Figure 5.4: A lunar lander’s 2D NN envelope; the set of trajectories originating at xk show the computation of
Teb(xk, u) ∀u ∈ Û , with Tgr = 1. The user’s zero-thrust input (leftmost, labeled “vk”) is being overridden by the one
shown in bold. Also shown are the band of samples adjoining the envelope, and the resultant Voronoi tessellation.

Finally, we employ a grace period when identifying envelope crossings, primarily to combat the
error-induced noisy nature of NN envelopes. We define Tgr , the grace period, as the maximum
amount of time that a trajectory may enter the alternate region without being labeled as a tran-
sition. Conversely, a transition is only pronounced if the trajectory excursion into the opposing
region lasts longer than Tgr . The rationale for this is that, as trajectories τ1 and τ2 of Fig. 5.5
suggest, the longer a trajectory stays within the latter region, the more likely it is that the perceived
transition did in fact occur, and was not an artifact of the envelope representation. A trajectory
such as τ3 in Fig. 5.5 thus does not qualify as a transition according to this criterion.

5.3 Implementation

Computation of Teb(x, u)

We define Teb(x, u) in the discrete case as the time period to the first state that is classified as being
in Xout . Although measuring Teb in seconds may seem natural, it is more practical to express it as
an integer number of fixed time steps ∆t, with Th and Tgr measured likewise. In computing Teb

there is usually no need to search for a breach past Th; it is always sufficient to know that Teb > Th
instead of the actual value (and thus our earlier use of Teb = +∞ in this case).

When searching for re-entries, we search up to an additional Th into the future. If a re-entry

Xout

Xin

τ1
τ2

τ3

Figure 5.5: Using a grace period to combat envelope (approximation) noise; for Tgr = 2, τ1 forms a definite breach,
τ2 a definite re-entry, and τ3 merely a “brushing” of the envelope (i.e., not a transition).
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is not found within that span, the next best thing is to select the control input whose state-space
trajectory comes the closest. The relative proximity of the various trajectory endpoints can be
effectively approximated as the average distance to the k nearest NN samples from Xin , with k = 3
usually being sufficient; k = 1 tends to be unreliable.

Blending function

There are a number of ways to implement B(xk, vk) that appears in (5.2). We have used a con-
servative approach, namely B(xk, vk) = N(xk, vk). A more flexible and general approach is to
implement it as a blending function

Bf (xk, vk) = αvk + (1− α)N(xk, vk) (5.5)

where

α = min

[
Teb(xk, vk)− 1

Th
, 1

]
(5.6)

This modulates the strength of the correction based on the immediacy of a breach, and thus allows
the user more freedom at longer lead times. The approach gives corrections whose magnitudes vary
between those of single-step containment and the B = N case above.

Envelope construction

As mentioned earlier, we employ NN methods to classify query points based upon samples that
are known to be viable or unviable. Algorithm 6 describes how the classified sample points are
obtained, while (5.4) describes their application in the classifier.

Algorithm 6 Computation of X̂in , X̂out for the NN classifier
X̂in , X̂out ← {∅}
for i = 1 to n do

~x← rand uniform(X )
if oracle(~x) = 1 then
X̂in ← X̂in + ~x

else
X̂out ← X̂out + ~x

X̂in , X̂out ← scale samples(X̂in , X̂out)
X̂in , X̂out ← dump redundant(X̂in , X̂out)

The oracle(~x) is a function that authoritatively answers the question of whether the given
state is controllable. It may obtain its knowledge by analytic, empirical, or heuristic means. The
reason we do not consult the oracle directly during online simulation is that frequently these are
extremely slow. The NN classifier essentially serves to embody the oracle’s knowledge in a form that
is optimized for query speed, and serves as a universal encoding to which all other representations
may be easily translated. If explicit viable and nonviable samples can be obtained from an external
source, such as those that could be extracted from exhaustive RRT-Blossom runs, these may be
used directly, obviating the above sample generation.

As with most learning methods, it is necessary to scale or normalize the training data prior to
use, given that the NN classifier uses an L2 norm distance metric in state-space. At present we select
appropriate scaling factors manually, based on some understanding of the shape of the controllable
region. The parameters should be chosen so that the significant features of the envelope surface
(i.e., bumps, valleys, ridges, etc.) are of similar magnitude in all the state-space dimensions in
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Figure 5.6: The “4 obstacles” terrain for the car.

which they lie, to avoid being trivialized and hidden in the noise or error inherent in the classifier’s
representation of the surface.

A final measure taken to reduce unnecessary load is to discard redundant samples, ones which do
not contribute to the NN decision surface, and consequently ones whose removal does not change
it. Although a number of methods exist to do this[P.E68, Cha74, Das91], we employ a simpler
technique. We make use of the fact that the samples are uniformly distributed, and compute
the average inter-sample distance δs. We then discard all samples which are further than k δs
from the decision surface2. The value of k is chosen by trying a number of possibilities, typically
k ∈ {5, 10, 20, . . . }, and seek the first one that results in a consistent subset, namely one that
properly classifies every sample from the original sets. This yields a well-structured band of samples
around the decision surface.

5.4 Results

We have successfully applied the viability envelope method to four systems:

1. the lunar lander, as discussed in section 2.2

2. a dynamical model of bicycle balance having a 2D state space (θ, dθ/dt), where θ represents
the tilt of the bicycle

3. a steerable car restricted to an infinitely long straight road of limited width, having a 2D state
space (y, θ) where y represents the distance of the car from one of the curbs, and θ represents
the car’s orientation with respect to the road

4. a steerable car restricted to a terrain of arbitrary, bounded geometry

The last example is the most complex in terms of having a 3D state-space (x, y, θ) and no
easily-modeled analytic solution. For brevity, we restrict our results and discussions to this last
example.

Fig. 5.1 shows a trial run for a car on a track using a 3D viability envelope. The user is able to
interactively steer the car at will but is prevented by the system from leaving the track. Fig. 5.2
shows how the safety constraints project onto the control input space for this problem. The user

2This can be approximated by measuring instead the distance to the nearest NN sample of opposite class.
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Û Û

Th
Teb

(a) (b)

Th
Teb

Figure 5.7: Teb behaviour and viability of Û for a fixed-velocity car; the trajectories correspond to breach-free controls,
which appear check-marked and green in the Teb vs. Û bar graphs underneath. Case (b) is instructive: although the
car’s distance from the opposing curb suggests some leeway, the car is in fact nearly upon the point of no return (i.e.,
envelope), as hinted by the many Teb ≈ 0, and must immediately choose one of the breach-free inputs.

input vk consists of a sequence of right and left turns of the steering wheel, as represented by the
smooth line on the graph. The nonviable control inputs are given by the shaded areas. The applied
control input, uk is computed as given by Equation 5.2 and is represented by the blue, discrete
line (an artifact of the discretization of U). Lastly, Fig. 5.7 shows the set of viable and nonviable
steering directions for various states of the car during a simulation.

Our method runs interactively on a 2.4GHz Pentium IV. We target a 30Hz interactive sim-
ulation rate to give the user reasonable responsiveness. Table 5.1 lists the various parameters
used for the scenarios: number of NN samples3, discretization of control space, time horizon, and
grace period. The latter two are expressed in terms of number of simulation steps (i.e., 1

30s).
It should be also noted that the original number of NN samples for each case is much larger;
the reported number is that of the remaining set when redundant samples have been removed by
dump redundant(X̂in,X̂out).

Table 5.1: System parameters per scenario

scenario # samples || Û || Th Tgr

lunar lander 1,218 9 15 1
bike 3,513 9 10 1

car (straight road) N/A 9 10 0
car (track) 42,117 31 10 1

car (4 obstacles) 176,545 15 10 1

3In the case of a car on a straight road, which was the first we experimented with, a hand-generated polygonal
envelope was used instead of a NN classifier.
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