
A Study of AdaBoost in 3D Gesture Recognition

Jia Sheng
Department of Computer Science

University of Toronto
Toronto, Ontario

jsheng@dgp.toronto.edu

Abstract

In this report, the AdaBoost algorithm is applied to multi-class 3D ges-
ture recognition problem. The performance of AdaBoost is compared
across different base classifiers and between different data sets. One
method of improving AdaBoost by regularizing the distribution weights
is also presented and discussed.

1 Introduction

Boosting is one type of meta learning methods that try to build a ”good” learning algo-
rithm based on a group of ”weak” classifiers, where ”weak” comes from Valiant’s PAC
(probably approximately correct) framework [8]. According to Schapire [4], the first prov-
able polynomial-time boosting algorithm was given by Schapire [3] and later improved
by Freund [1]. Since then, boosting has been explored by many researchers theoretically
and empirically. The most popular algorithmAdaBoost, which was introduced by Freund
and Schapire in 1995 [2], has successfully solved many practical problems of previous
boosting approaches. AdaBoost is also extended to multi-class classification problems and
regression problems in [2] and [5].

Many experiments have been carried out using AdaBoost and its variants (refer to [4]), in-
cluding OCR, text filtering, image retrieval, medical diagnosis, etc. In this report, we apply
the idea of boosting on3D Gesture Recognition, which is of practical importance in many
areas, such like human-computer interaction, computer vision and computer graphics. A
good introduction to hand gesture recognition can be found in [6]. The human hand ges-
ture can provide a free and natural alternative to today’s cumbersome interface devices so
as to improve the efficiency and effectiveness of human-computer interaction. Almost all
researches on gesture recognition are based on computer vision techniques, thus suffering
the difficulties of image processing and feature extraction. In our experiment, however, we
benefit from the Vicon motion tracking system [9] and can solve the problem of ”finding”
the hand relatively more easily and more accurately. Few have been done to try to integrate
the boosting approach with the gesture recognition problem and we hope our experiments
would arose more interest in this area.

This report is organized as follows: Section 2 talks about the algorithm of AdaBoost and
its variant AdaBoost.M1 for multi-class problems. Section 3 describes the process of data
capturing and feature extraction of gestures. In Section 4, experiment methods and results
are presented. Some thoughts on the AdaBoost algorithm and the experiment results are

shown in Section 5. The last section includes the conclusion and future work.

2 The AdaBoost Algorithm

Boosting algorithm works by calling a weak classifier several times, each time providing
it with a different distribution over the domainX, and in the end combine the hypotheses
from all iterations into one hypothesis. The basic idea of boosting is that it tries to focus
more on the ”hard” part of the data space by increasing the probability of those data, thus
hoping to decrease the mistakes made by the weak classifier. The pseudo-code of AdaBoost
is as follows:

AdaBoost
Input : N labelled examples< (x1, y1), ...(xN , yN) >, xi ∈ X, yi ∈ {−1, 1}

weak learning algorithmWeakLearn
integerT specifies the iteration number

Initialize : initial weightsw, wi = 1/N , for i = 1, ..., N .
t = 0, err0 = 0

Do while t ≤ T anderrt < 0.5
1. Normalizewt, so that

∑
1≤i≤N wt

i = 1.
2. CallWeakLearn, providing with the weightwt; get hypothesisht : X → {−1, 1}.
3. Computeerrt =

∑
1≤i≤N wt

ie
t
i, whereet

i = 1, if ht(xi) 6= yi, and0 otherwise.
4. Setαt = 0.5log[(1− errt)/errt].
5. Update the weights to be:wt+1

i = wt
iexp(2αtet

i).
6. t = t + 1.

Output : the hypothesish(xi) = sign[
∑t

j=1 αjhj(xi)]

Above is slightly different than in [2] in that we quit the iteration when the weighted error
rate of the weak classifier is higher than 0.5. The theoretical lower bounds are given in [5]
and [2], which states that the training error is bounded byexp(−2

∑t
j=1(1/2− errj)2).

It is worth to note that in step 2, when theWeakLearn is provided with the weight vector
wt, it has two options. Some classifiers can make use of weights directly, such as gradient
based algorithms to change the update step size based on the example weights. Other
algorithms, however, cannot make direct use of the weights, such as KNN1. In the latter
case, we can re-sample the training data to generate a new set of training examples that is
distributed according to the weights. The examples with larger weight values have more
chances of being chosen in the new set, even multiple times, while the less favored might
get lost.

AdaBoost can be extended to multiclass classification problems. There are some vari-
ants, including AdaBoost.M1, AdaBoost.M2 [2] and AdaBoost.MH [5]. In this report we
use AdaBoost.M1 for our multiple gesture recognition. The main difference between Ad-
aBoost.M1 with the above procedure is that the final combination step in AdaBoost.M1
considers only the correctly labelled instances in each iteration and maximize the sum of
the weights on these instances, like following:

Output : the hypothesish(xi) = argmaxy∈Y

∑t
j=1 αj [ht(xi) = yi]

whereY = {1, ..., k} and[x] = 1, if x is true; [x] = 0 otherwise.

1Here KNN stands for theun-weighted K-Nearest Neighbor algorithm, where all data have the
same relevance for classification. We are not talking about its variantweighted KNNwhere the data
have different voting weights

3 Features for 3D Gesture Recognition

Vicon [9] is a motion capture system composing of a group of infrared cameras that tracks
the reflective markers attached to the subject body. The 2D image seen from each camera
is combined to reconstruct the 3D scene in the data station and the 3D position information
of the markers can be obtained at a rate of 20-30 fps by the user’s application from the
workstation and real-time server.

Different to traditional image-based approaches, Vicon possesses the superiority of being
able to get the position information accurately: the precision is in millimeter. On the
other hand, however, it has no idea of other parts of the hand except for those reflective
points. Besides, there might be some noise in the stream due to the missing of markers or
some ”ghost points”. So we decide to use it on the recognition of gestures, which are the
dynamic movements of hands within a certain time interval, instead of postures, which are
represented by static shapes of hands, e.g. the American Sign Language.

Let pi
t denote the position of markeri at timet, a gestureG can be represented by the set

of all positions of all markers within the period of that gesture. For simplicity, we assume
all markers move in parallel, so we haveG = {p1, ..., pT }, pt = (xt, yt, zt) denotes 3D
coordinates andT is the duration of the gesture. To reduce the amount of data, we need to
extract features out of the 3D point sequences. The features are chosen in a similar way as
[7], but extended from 2D to 3D. Totally we use 16-dimension features in our experiment,
defined as below:

f1 = (x3 − x1)/|p3 − p1|
f2 = (y3 − y1)/|p3 − p1|
f3 = (z3 − z1)/|p3 − p1|

f4 = |pT − p1|
f5 = (xT − x1)/|pT − p1|
f6 = (yT − y1)/|pT − p1|
f7 = (zT − z1)/|pT − p1|

f8 =
√

((xmax − xmin)2 + (ymax − ymin)2 + (zmax − zmin)2)
f9 = (xmax − xmin)/f8

f10 = (ymax − ymin)/f8

f11 = (zmax − zmin)/f8

f12 =
∑T

t=2 |pt − pt−1|
let θt be the angle between−−−−→pt−1pt and−−−−→ptpt+1

f13 =
∑T−1

t=2 θt

f14 =
∑T−1

t=2 θ2
t

f15 = maxT−1
t=1 |pt+1 − pt|

f16 = T

The features are defined according to some criterion: each feature should be incrementally
computable in constant time per input point, thus allowing effectively handling of arbi-
trarily slow gestures and permitting online recognition; small changes in the input should
result only small changes in the features; each feature should be meaningful so as to be
used semantically. Clearly the above features satisfy such requirements.

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

AdaBoost with 1NN

iteration number

er
ro

r
ra

te

adaboost train error
adaboost test error
1NN train err
1NN test error

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

AdaBoost with Naive Bayes

iteration number

er
ro

r
ra

te

adaboost train error
adaboost test error
NaiveBayes train err
NaiveBayes test error

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

AdaBoost with LDA

iteration number

er
ro

r
ra

te

adaboost train error
adaboost test error
LDA train err
LDA test error

Figure 1: Comparison of AdaBoost.M1 and the base classifiers. From left to right, the
base classifiers are 1NN, NaiveBayes and LDA. The x-axis is the iteration number and the
y-axis shows the error rate. Black dot line is the training error of the base classifier, black
dash-dot line is the testing error of the base classifier; red circle is the training error of
AdaBoost.M1, blue cross is the testing error of AdaBoost.M1.

4 Experiments

4.1 Data Sets Preparation

We define 6 gestures in our experiment: ”line”, ”angle”, ”cross”, ”circle”, ”triangle”, ”rect-
angle”, whose meaning can be interpreted from the name, for example, ”circle” stands for
the gesture given by the user when he draws a circle in the air. For each gesture, totally
200 instances are captured. Those data are then split: 120 are used for training and 80 for
testing.

In order to study the performance of AdaBoost under noise, we prepare 2 data sets: Set1 is
the original data; in Set2, a certain portion of training data is replaced by random noise.

3 weak classifiers are used in the experiment: 1NN, NaiveBayes and LDA. The covariance
matrix in LDA is simplified to be diagonal. We use re-sampling to make use of the weights
in each iteration of AdaBoost.M1. Since 1NN measures the similarity between data points
based on their Euclidean distances, normalization is carried on each dimension to place the
training data in[0, 1], then on the testing data.

4.2 Experiments on Adaboost.M1

First, with the original data Set1, we compare the performances of weak classifiers and
AdaBoost.M1 using different iterations.

From Figure 1, we can see that for all three cases, AdaBoost.M1 outperforms the base
classifiers, both for training and testing sets. We only show 5 iterations here because the
weak classifiers using NaiveBayes and LDA will perform worse than random guessing, i.e.
errt ≤ 0.5, after several iterations. For binary classification, we can just flip the hypothesis
if error rate is less than 0.5, but for multi-class problems, the algorithm will quit.

Then we examine the performance of AdaBoost.M1 on noisy data Set2. We replace parts
of the training set with random noises and compare the result of base classifier and Ad-
aBoost.M1, as shown in Figure 2. The result is interesting: for 1NN based AdaBoost, the
performance drops more slowly than the base classifier, even when the training data is all
random noises, the error rate is only 50% ! for NaiveBayes and LDA based AdaBoost,
however, the performance breaks down after the noise percentage is over certain threshold.
These indicate contradictorily the sensitivity of AdaBoost to noise. We prefer the latter
two cases based on NaiveBayes and LDA, and think AdaBoost is more sensitive to noise,
because in the nearest neighbor algorithm, the data is so dense that the chance of meeting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AdaBoost vs. 1NN under noisy data

noise percentage

er
ro

r
ra

te

1NN testing error
adaboost testing error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AdaBoost vs. NaiveBayes under noisy data

noise percentage

er
ro

r
ra

te

NaiveBayes testing error
adaboost testing error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AdaBoost vs. LDA under noisy data

noise percentage

er
ro

r
ra

te

LDA testing error
adaboost testing error

Figure 2: Comparison of AdaBoost.M1 and the base classifiers under noisy data. The x-
axis is the percentage of random noise in the training data, ranging from 0 to 1; the y-axis
the error rate of testing error. From left to right, the base classifiers are 1NN, NaiveBayes
and LDA. Red line is the testing error of AdaBoost.M1, while blue line is the testing error
of the base classifier.

the data from the same class as the test data point in its neighborhood is high even when
the data is totally noise. However, it is open to further investigation.

5 Revising Adaboost.M1

The idea of AdaBoost is that it tries to put more emphasis on the ”harder” data by adjusting
the distribution in every iteration. Let’s first take a look at the change of weights with the
iteration number.

We can see in Figure 3 that AdaBoost.M1 will correctly classify a large percentage of
data in most iterations, but struggle for a better estimates on a small group of instances.
Moreover, we find that the weight values for the hard instances grow as the iteration num-
ber increases, which means those data get more chances to be selected in the re-sampling
process, and means that AdaBoost.M1 is ”trapped” in those data. It also fits our conjec-
ture that AdaBoost.M1 is sensitive to noises. So we propose our first method to modify
AdaBoost.M1:

Revise 1: set the instances with the highest weights to be 0 afterc iterations.

By setting the weights zero, we actually discard those hard examples. Alternatively, we
may set those weights to the mean value instead of zero, and we have

Revise 2: set the instances with the highest weights to have the mean weight value afterc
iterations.

We hope these methods would give AdaBoost more chances of jumping out of those in-
stances. The comparison of AdaBoost.M1, AdaBoost.M1 Revise(1) and AdaBoost.M1
Revise(2) is shown in Figure 4 (c = 5).

The result show that Revise 1 and Revise 2 do not show significant improvements than
AdaBoost.M1, if any. But considering the fact that we actually discard the hard data by
setting their weights zero in Revise 1, such method has potential of reducing the amount of
data. It is worthy of further study in the future.

6 Conclusion and Future Work

So far, we have reported our experiments of AdaBoost algorithm on the application of
3D gesture recognition. For all the three base classifiers we have tried, AdaBoost.M1 has
shown significant improvement in performance. On the other hand, however, AdaBoost

5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

AdaBoost with 1NN

iteration number

er
ro

r
ra

te

adaboost train error
adaboost test error

0 0.005 0.01
0

100

200

300

400

500

600

700
Weight distribution after 1 iteration

weight value

in
st

an
ce

 n
um

be
r

0 0.005 0.01
0

100

200

300

400

500

600
Weight distribution after 2 iterations

weight value

in
st

an
ce

 n
um

be
r

0 0.01 0.02 0.03
0

100

200

300

400

500

600

700
Weight distribution after 5 iteration

weight value

in
st

an
ce

 n
um

be
r

0 0.005 0.01 0.015
0

100

200

300

400

500

600

700
Weight distribution after 10 iteration

weight value

in
st

an
ce

 n
um

be
r

0 0.02 0.04 0.06
0

100

200

300

400

500

600

700
Weight distribution after 20 iteration

weight value

in
st

an
ce

 n
um

be
r

Figure 3: The training and testing error of 1NN-based AdaBoost.M1 for 20 iterations and
the weight distribution after 1, 2, 5, 10, 20 iterations, respectively from left to right.

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
AdaBoost Revise

iteration number

er
ro

r
ra

te

adaboost test error
revise1 test error
revise2 test error

Figure 4: The comparison of AdaBoost.M1 and two revising methods. The blue line is the
testing error of 1NN-based AdaBoost.M1 for 20 iterations. The red line is for Revise 1 and
the cyan line is for Revise 2.

seems more sensitive to noisy data. We further propose some of our thoughts on revising
the AdaBoost algorithm, which impose some kind of regularization on the distribution
weights during the iteration in order to prevent the possible detriment caused by hard-to-
classify examples. Although the results don’t show significant improvement, we think it is
important to impose regularization to AdaBoost algorithms.

As to the specific task of 3D gesture recognition, one of the key problems is how to distin-
guish intentional and unintentional movements. The data in our experiments is captured by
explicitly triggering the starting and ending point of each gesture. In real life, however, it is
obtrusive or even impossible to ask the subject to send a signal before and after each ges-
ture. Basically, it involves the problem of binary classification based the movement within
a certain time interval. Considering that the speed of movements may vary a lot, such clas-
sification would pose a challenge on traditional approaches, while AdaBoost might give
different results.

Another potential usage of AdaBoost in 3D gesture recognition is the selection of features.
In our experiments, we propose the 16 dimension feature, which come almost empirically
from our experience. Other researchers may suggest other definition of features. How to
judge the quality of different feature sets, combine these sets, and finally distill an optimal
subset is an interesting and important problem. AdaBoost, again, might be a good option.

Implementation

The algorithm is written with Matlab and source code and data can be downloaded from
http://www.dgp.toronto.edu/˜jsheng/ml

References

[1] Y. Freund. Boosting a weak learning algorithm by majority.Information and Compu-
tation, 121(2):256-285, 1995.

[2] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting.Journal of Computer and System Sciences, 55(1):119-139,
Auguest 1997.

[3] R.E. Schapire. The strength of weak learnability.Machine Learning, 5(2):197-227,
1990.

[4] R.E. Schapire. The boosting approach to machine learning: an overview.MSRI Work-
shop on Nonlinear Estimation and Classification, 2002.

[5] R. Schapire and Y. Singer. Improved boosting algorithms using confidentce-rated pre-
dictions.Machine Learning, 39(3):297-336, December 1999.

[6] V. Pavlovic, R. Sharma, T.S. Huang. Visual interpretation to hand gestures for human
computer interaction: a review,IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1997

[7] D. Rubine. Specifying gestures by examples.SIGGRAPH ’91 Proceedings,
25(4):329–337, July 1991.

[8] L.G. Valiant. A theory of the learnable.Communications of the ACM, 27(11):1134-
1142, November 1984.

[9] http://www.vicon.com

