
Video Object Annotation, Navigation, and Composition

Dan B Goldman1 Chris Gonterman2 Brian Curless2 David Salesin1,2 Steven M. Seitz2

1Adobe Systems, Inc.
801 N. 34th Street
Seattle, WA 98103

{dgoldman,salesin}@adobe.com

2Computer Science & Engineering
University of Washington
Seattle, WA 98105-4615

{gontech, curless, salesin, seitz}@cs.washington.edu

ABSTRACT
We explore the use of tracked 2D object motion to enable
novel approaches to interacting with video. These include
moving annotations, video navigation by direct manipulation
of objects, and creating an image composite from multiple
video frames. Features in the video are automatically tracked
and grouped in an off-line preprocess that enables later inter-
active manipulation. Examples of annotations include speech
and thought balloons, video graffiti, path arrows, video hy-
perlinks, and schematic storyboards. We also demonstrate a
direct-manipulation interface for random frame access using
spatial constraints, and a drag-and-drop interface for assem-
bling still images from videos. Taken together, our tools can
be employed in a variety of applications including film and
video editing, visual tagging, and authoring rich media such
as hyperlinked video.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Interaction styles.

General terms: Design, Human Factors, Algorithms

Keywords: Video annotation, video navigation, video in-
teraction, direct manipulation.

1 INTRODUCTION
Present video interfaces demand that users think in terms of
frames and timelines. Although frames and timelines are
useful notions for many editing operations, they are less well
suited for other types of interactions with video. In many
cases, users are likely to be more interested in the higher
level components of a video such as motion, action, charac-
ter, and story. For example, consider the problems of attach-
ing a moving annotation to an object in a video, or finding a
moment in a video in which an object is in a particular place,
or of composing a still from multiple moments in a video.
Each of these tasks revolves around objects in the video and
their motion. But although it is possible to compute object
boundaries and to track object motion, present interfaces do
not utilize this information for interaction.

In this paper we propose a framework using (2D) video ob-
ject motion to enable novel approaches to user interaction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’08, October 19–22, 2008, Monterey, CA, USA..

Copyright 2008 ACM 978-1-59593-975-3/08/10 ...$5.00.

Although the concept of object motion is not as high-level as
character and story, it is a mid-level aspect of video that we
believe is a crucial building block toward those higher-level
concepts. We apply computer vision techniques to under-
stand how various points move about the scene and segment
this motion into independently moving objects. This infor-
mation is used to simplify the interaction required to achieve
a variety of video manipulation tasks.

In particular, we propose novel interfaces for three tasks that
are under-served by present-day video interfaces: annotation,
navigation, and image composition.

Video annotation. Video annotation is the task of associat-
ing graphical objects with moving objects on the screen. In
existing interactive applications, only still images can be an-
notated, as in the “telestrator” system used in American foot-
ball broadcasting (see Figure 1). Using our system, however,
such annotations can easily be attached to moving objects in
the scene by novices with minimal user effort. Our system
supports descriptive labels, illustrative sketches, thought and
word bubbles communicating speech or intent, path arrows
indicating motion, and hyperlinked regions (Figures 3–7).
Given the pre-computed object motion, the system can also
determine when objects are occluded or change appearance
significantly, and modify the appearance of the annotations
accordingly (Figure 8). We envision video object annota-
tions being used in any field in which video is produced or
used to communicate information.

Video navigation. The use of motion analysis also permits
novel approaches to navigating video through direct manip-
ulation. Typical approaches to navigating video utilize a lin-
ear scan metaphor, such as a slider, timeline, or fast-forward
and rewind controls. However, using pre-computed object
motion, the trajectories of objects in the scene can be em-
ployed as constraints for direct-manipulation navigation: In
our system, clicking and dragging on objects in a video frame
causes the video to immediately advance or rewind to a frame
in which the object is located close to the ending mouse po-
sition. Contemporaneous work [7, 11] shows that this ap-
proach streamlines video tasks requiring selection of individ-
ual frames (for example, locating a “cut frame” on which to
begin or end a shot). Our system also enables a novel mode
of re-animation of video sequences using the mouse as in-
put: We can direct the motion of an object such as a face by
dragging it around the screen. This interface can be applied
to “puppeteer” existing video, or to retime the playback of a
video.

Video-to-still composition. Finally, we discuss the task of

rearranging portions of a video to create a new still image.
Agarwala et al. [1] have previously explored the problem of
combining a set of stills into a single, seamless composite.
However, when the source material is video, the task of iden-
tifying the appropriate moments becomes a problem in and of
itself. Many consumer cameras now support a “burst mode”
in which a high-speed series of high-resolution photos is
taken. Finding Cartier-Bresson’s “decisive moment” in such
an image stream, or composing a photomontage from multi-
ple moments, is a significant challenge. Rav-Acha et al. [19]
have proposed editing videos using evolution of time-fronts,
but have not presented a user interface for doing so. We
demonstrate an interactive interface complementary to such
algorithms, for composition of novel still images using a
drag-and-drop metaphor to manipulate people or other ob-
jects in a video.

To achieve these interactions, our system first analyzes the
video in a fully automatic preprocessing step that tracks the
motion of image points across the video and segments those
tracks into coherently moving groups. Although reliably ex-
tracting objects in video and tracking them over many frames
is a hard problem in computer vision, the manipulations we
support do not require perfect object segmentation and track-
ing, and can instead exploit low-level motion tracking and
mid-level grouping information. Furthermore, aggregating
point motion into coherent groups has a number of benefits
that are critical for interaction: We can select a moving re-
gion using a single click, estimate object motion more ro-
bustly, and, to a limited extent, handle changes of object ap-
pearance, including occlusions. Our contributions include an
automated preprocess for video interaction that greatly en-
riches the space of interactions possible with video, an intu-
itive interface for creating graphical annotations that trans-
form along with associated video objects, a fluid interaction
technique for scrubbing through video with single or multiple
constraints, and a novel drag-and-drop approach to compos-
ing video input into new images by combining regions from
multiple frames.

1.1 Related work

Figure 1: A typical telestra-
tor illustration. (c©Johntex,
CC license [30])

The telestrator [30], pop-
ularly known as a “John
Madden-style whiteboard,”
was invented by physicist
Leonard Reiffel for draw-
ing annotations on a TV
screen using a light pen.
This approach has also
been adopted for individ-
ual sports instruction using
systems like ASTAR [3]
that aid coaches in review-
ing videos of athletic performance. However, as previously
mentioned, annotations created using a telestrator are typi-
cally static, and do not overlay well on moving footage.

In recent years, broadcasts of many professional sporting
events have utilized systems supplied by Sportvision [28] to
overlay graphical information on the field of play even while
the camera is moving. Sportvision uses a variety of tech-
nologies to accomplish these overlays, including surveying,

calibration, and instrumentation of the field of play or rac-
ing environment. Although this instrumentation and cali-
bration allow graphics to be overlaid in real time during the
broadcast, it requires expensive specialized systems for each
different class of sporting event, and is not applicable to pre-
existing video acquired under unknown conditions.

Tracking has previously been used for video manipulation
and authoring animations. For example, Agarwala et al. [2]
demonstrated that an interactive keyframe-based contour track-
ing system could be used for video manipulation and stroke
animation authoring. However, their system required consid-
erable user intervention to perform tracking. In contrast, our
application does not require pixel-accurate tracking or ob-
ject segmentation, so we can use more fully-automated tech-
niques that do not produce pixel segmentations.

Our method utilizes the particle video approach of Sand
and Teller [23] to densely track points in the video. Ob-
ject tracking is a widely researched topic in computer vi-
sion, and many other tracking approaches are possible; Yil-
maz et al. [31] recently surveyed the state of the art. How-
ever, particle video is especially well suited to interactive
video applications because it provides a dense field of tracked
points that can track fairly small objects, and even points in
featureless regions. An important advantage of the particle
video approach over other methods is that it produces tracks
that are both spatially dense and temporally long-range.

Our grouping preprocess accomplishes some of the same
goals as the object grouping technique of Sivic et al. [26],
which tracks features using affine-covariant feature match-
ing and template tracking, followed by a grouping method
employing co-occurrence of tracks in motion groups. That
method has shown significant success at grouping different
views of the same object even through deformations and sig-
nificant lighting changes. However, after some experimenta-
tion we found that it has several drawbacks for our applica-
tion, which we discuss in depth in Section 6.

Balakrishnan and Ramos [18] also developed a system with
a novel navigation and annotation interface to video. How-
ever, their approach is based on a linear timeline model, and
annotations apply only to individual frames in a video.

Thought and speech balloons have previously been employed
in virtual worlds and chat rooms [15, 13], in which the as-
sociated regions are known a priori. Kurlander et al. [13]
specifically address the problem of balloon layout. How-
ever, their system was free to assign the placement of both
the word balloons and the subjects speaking them, whereas
our system is designed to associate thought and speech bal-
loons with arbitrary moving video objects.

We are not the first to propose the notion of hyperlinked
video as described in Section 4.1. To our knowledge, the
earliest reference of this is the Hypersoap project [6]. How-
ever, the authoring tool proposed in that work required ex-
tensive user annotation of many frames. Smith et al. [27]
taxonomized hyperlinks in dynamic media, but their imple-
mentation is limited to simple template tracking of whole ob-
jects. We believe our system offers a significantly improved
authoring environment for this type of rich media.

Numerous previous works discuss composition of a still or
a short video from a longer video, for the purposes of mov-
ing texture synthesis [25], modifying dialogue [4], animating
video sprites [24], or video summarization [19, 20, 16, 17].
In this paper we advocate and demonstrate the approach of
drag-and-drop manipulation as a tool for interactively direct-
ing such compositions.

Our system features a novel interface for scrubbing through
video using direct manipulation of video objects. This tech-
nique is similar in spirit to the storyboard-based scrubbing
approach of Goldman et al. [8], but permits manipulation di-
rectly on the video frame, rather than on an auxiliary story-
board image. The system of Goldman et al. required sev-
eral minutes of user interaction to author a storyboard be-
fore this manipulation can be performed. In contrast, our
approach requires only automated preprocessing to enable
direct-manipulation navigation. Indeed, we propose that our
navigation system can be used as part of an authoring sys-
tem to create such storyboards, as described in Section 4.3.
Our video navigation mechanism can be used to re-animate
video of a person, in much the same way as the spacetime
faces system [32], but without requiring a complex 3D shape
acquisition system.

Kimber et al. [12] introduced the notion of navigating a
video by directly manipulating objects within a video frame.
They also demonstrate tracking and navigation across multi-
ple cameras. However, their method uses static surveillance
cameras and relies on whole object tracking, precluding nav-
igation on multiple points of a deforming object such as we
demonstrate in Figure 10.

Contemporaneous works by Karrer et al. [11] and Dragice-
vic et al. [7] use flow-based preprocessing to enable real-time
interaction that is very similar to our approach described in
Section 4.2. Their research demonstrates that direct manip-
ulation video browsing permits significant performance im-
provements for frame selection tasks.

However, our work advances this concept in four impor-
tant ways: First and foremost, this paper presents a gen-
eral framework enabling a number of different kinds of di-
rect video manipulations, not only navigation. Second, our
preprocessing method achieves the long-range accuracy of
object-tracking [12] and feature-tracking methods [7], while
also retaining the spatial resolution provided by optical-flow-
based techniques [11]. Our use of motion grouping also im-
proves the robustness of the system to partial occlusions, and
makes it possible to track points well even near the bound-
aries of objects, points which might otherwise “slip” off of
one object onto another at some frame, causing an incorrect
trajectory. Third, our “starburst” manipulator widget effec-
tively represents the space of both simple and complex object
motions, whereas the motion path arrows employed in ear-
lier work are most effective at representing simple, smooth
motion paths. The starburst widget is more effective in sit-
uations such as Figure 10, in which it is more important to
convey the range of feasible motion than an object’s specific
path through the video (in this case, a spiral). Fourth, our
introduction of multiple constraints enables simple access to
more elaborate object configurations, also as shown in Fig-

ure 10. Finally, we introduce an inertial slider mechanism
allowing access to frames in which an object is off-screen.

In some respects, the approaches of Karrer et al. and Drag-
icevic et al. have advantages over our framework. Most no-
tably, both methods use a less expensive preprocessing ap-
proach than ours, potentially making them more widely ap-
plicable in practice. Both methods also include terms in their
cost functions that discourage discontinuous jumps in time,
which may be desirable for certain applications.

1.2 Overview
Our system consists of several off-line preprocessing stages
(Section 2), followed by an interactive interface for video
selection that is common to all our techniques (Section 3).
The subsequent section describes applications; our interfaces
for video annotation (Section 4.1), navigation (Section 4.2),
and recomposition (Section 4.3).

2 PRE-PROCESSING
Our preprocessing consists of two phases. First, point par-
ticles are placed and tracked over time (Section 2.1). Sec-
ond, the system aggregates particles into consistent moving
groups (Section 2.2).

2.1 Particle tracking
To track particles, we apply the “particle video” long-range
point tracking method [23, 22], which takes as input a se-
quence of frames and produces as output a dense cloud of
particles, representing the motion of individual points in the
scene throughout their range of visibility. Each particle has a
starting and ending frame, and a 2D position for each frame
within that range.

The key advantage of the particle video approach over either
template tracking or optical flow alone is that it is both spa-
tially dense and temporally long-range. In contrast, feature
tracking is long-range but spatially sparse, and optical flow is
dense but temporally short-range. Thus, particle video data is
ideal for our applications, as we can approximate the motion
of any pixel into any other frame by finding a nearby particle.

In the sections that follow, we will use the following nota-
tion: A particle track i is represented by a 2D position xi(t)
at each time t during its lifetime t ∈ T (i). The total number
of particles is denoted n.

2.2 Particle grouping
For certain annotation applications, we find it useful to esti-
mate groups of points that move together over time. Our sys-
tem estimates these groupings using a generative K-affines
motion model, in which the motion of each particle i is gen-
erated by one of K affine motions plus isotropic Gaussian
noise:

xi(t +Δt) = AL(i)(t)[xi(t)]+η (1)

Here Ak(t) represents the affine motion of group k from time
t to time t +Δt, and η is zero-mean isotropic noise with stan-
dard deviation σ . (For notational convenience we write Ak(t)
as a general operator, rather than separating out the linear ma-
trix multiplication and addition components.) In our system,
Δt = 3 frames. Each particle is assigned a single group la-
bel 1 ≤ L(i) ≤ K over its entire lifetime. The labels L(i) are

distributed with unknown probability P[L(i) = k] = πk. We
denote group k as Gk = {i|L(i) = k}.

Our system optimizes for the maximum likelihood model

Θ = (A1, . . . ,AK ,π1, . . . ,πK ,L(1), . . . ,L(n)) (2)

using an EM-style alternating optimization. Given the above
generative model, the energy function Q can be computed as:

Q(Θ) = ∑
i

∑
t∈T (i)

(
d(i, t)
2σ2

− log(πL(i))
)

(3)

where d(i, t) = ||xi(t + Δt)− AL(i)(t)[xi(t)]||2, the residual
squared error.

To compute the labels L(i), we begin by initializing them to
random integers between 1 and K. Then, the following steps
are iterated until Q converges:

• Affine motions Ak are estimated by a least-squares fit of an
affine motion to the particles Gk.

• Group probabilities πk are computed as the numbers of
particles in each group, weighted by particle lifespan, then
normalized such that ∑k πk = 1.

• Labels L(i) are reassigned to the label that minimizes the
objective function Q(Θ) per particle, and the groups Gk
are updated.

In the present algorithm we fix σ = 1 pixel, but this could be
included as a variable in the optimization as well.

The output of the algorithm is a segmentation of the particles
into K groups. Figure 2 illustrates this grouping on one of
our input datasets. Although there are some misclassified
particles, the bulk of the particles are properly grouped. Our
interactive selection interface, described in Section 3, can be
used to overcome the minor misclassifications seen here.

Figure 2: Four frames from a video sequence, with particles
colored according to affine groupings computed in Section 2.2.
(video footage c©2005 Jon Goldman)

3 VIDEO SELECTION
Several of our interactions require the selection of an object
in the video, either for annotation or direct manipulation of
that object. The object specification task is closely related
to the problems of interactive video segmentation and video
matting [2, 5, 14, 29]. However, these other methods are
principally concerned with recovering a precise matte or sil-
houette of the object being selected. In contrast, the goal of
our system is to recover the motion of a particular object or
region of the image, without concern for the precise location
of its boundaries.

In our system, the user selects video objects simply by paint-
ing a stroke or dragging a rectangle over a region Rs of the
image. This region is called the anchor region, and the frame
on which it is drawn is called the anchor frame, denoted ts.
The anchor region defines a set of anchor tracks. For some
applications, it suffices to define the anchor tracks M(s) as
the set of all particles on the anchor frame that lie within the
anchor region:

M(s) = {i|ts ∈ T (i),xi(ts) ∈ Rs} (4)

However, this simplistic approach to selecting anchor tracks
requires the user to scribble over a potentially large anchor
region. The system can reduce the amount of user effort by
employing the particle groupings computed in section 2.2.
Our interface uses the group labels of the particles in the an-
chor region to infer entire group selections, rather than indi-
vidual particle selections. To this end, the system supports
two modes of object selection. First, the user clicks once to
select the group of points of which the closest track is a mem-
ber. The closest track i∗ to point x0 on frame t0 is located as:

i∗(x0, t0) = argmin{i|t0∈T (i)}‖x0 −xi(t0)‖, (5)

and the selected group is simply GL(i∗(x,t)). Second, the user
paints a “sloppy” selection that includes points from multiple
groups. The resulting selection consists of the groups that are
well represented in the anchor region. Each group is scored
according to the number |Mk(s)| of its particles in the anchor
region s. Then any group whose score is a significant fraction
TG of the highest scoring group is accepted:

Mk(s) = Gk ∩M(s) ∀1 ≤ k ≤ K (6)

Sk(s) =
|Mk(s)|

max1≤k≤K |Mk(s)| (7)

G(s) =
⋃

{k|Sk(s)≥TG}
Gk (8)

The threshold TG is a system constant that controls the selec-
tion precision. When TG = 1, only the highest-scoring group
argmaxk|Mk(s)| is selected. As TG approaches 0, any group
with a particle in the selected region will be selected in its en-
tirety. We have found that TG = 0.5 generally gives intuitive
results.

Our system’s affine grouping mechanism may group par-
ticles together that are spatially discontiguous. However,
discontiguous regions are not always desired for annotation

or manipulation. To address this, only the particles that
are spatially contiguous to the anchor region are selected.
This effect is achieved using a connected-components search
through a pre-computed Delaunay triangulation of the parti-
cles on the anchor frame.

Both the group-scoring formula and connected components
search take only a fraction of a second, and can therefore be
recomputed on the fly while a paint stroke is in progress in
order to give visual feedback to the user about the regions
being selected.

By allowing more than one group to be selected, the user
can easily correct the case of over-segmentation, such that
connected objects with slightly different motion may have
been placed in separate groups. In the case of annotation, if
a user selects groups that move independently, the attached
annotations will simply be a “best fit” to both motions.

Using groups of particles confers several advantages over in-
dependent particles. As previously mentioned, user interac-
tion is streamlined by employing a single click or a loose se-
lection to indicate a moving object with complex shape and
trajectory. Furthermore, the large number of particles in the
object groupings can be used to compute more robust motion
estimates for rigidly moving objects. The system can also
annotate objects even on frames where the original anchor
tracks M(s) no longer exist due to partial occlusions or de-
formations. (However, our method is not robust to the case in
which an entire group is occluded and later becomes visible
again. This is a topic for future work.)

4 APPLICATIONS
Our interactive interface is patterned after typical drawing
and painting applications, with the addition of a video time-
line. The user is presented with a video window, in which the
video can be scrubbed back and forth using either a slider or
a direct manipulation interface described in Section 4.2. A
toolbox provides access to a number of different types of an-
notations and interaction tool modes, which are applied using
direct manipulation in the video window.

4.1 Video annotations
Telestrator-like markup of video can be useful not only for
sports broadcasting but also for medical applications, surveil-
lance video, and instructional video. Film and video profes-
sionals can use annotations to communicate editorial infor-
mation about footage in post-production, such as objects to
be eliminated or augmented with visual effects. Annotations
can also be used to modify existing video footage for enter-
tainment purposes with speech and thought balloons, virtual
graffiti, “pop-up video” notes, and other arbitrary signage.

In this Section, we describe our system’s support for five
types of graphical annotations, distinguished by their shape
and by the type of transformations (e.g., translation / homog-
raphy / similarity) with which they follow the scene. An an-
notation’s motion and appearance is determined by the mo-
tion of its anchor tracks: Transformations between the anchor
frame and other frames are computed using point correspon-
dences between the features on each frame. Some transfor-
mations require a minimum number of correspondences, so
if there are too few correspondences on a given frame — for

example because the entire group is occluded — the annota-
tion is not shown on that frame.

At present, we have implemented prototype versions of “graf-
fiti,” “scribbles,” “speech balloons,” “path arrows,” and “hy-
perlinks.”

Figure 3: Graffiti

Graffiti. These annotations
inherit a perspective defor-
mation from their anchor
tracks, as if they are painted
on a planar surface such as a
wall or ground plane. Given
four or more non-collinear
point correspondences, a ho-
mography is computed using
the normalized direct linear
transformation method de-
scribed by Hartley and Zis-
serman [10].

Depending on the length of
the video sequence, it may be
time-consuming to compute the transformations of an anno-
tation for all frames. Therefore, after the user completes the
drawing of the anchor regions, the transformations of graffiti
annotations are not computed for all frames immediately, but
are lazily evaluated as the user visits other frames. Further
improvements to perceived interaction speed are possible by
performing the computations during idle callbacks between
user interactions.

Figure 4: Scribbles
(footage c©2005 Jon
Goldman)

Scribbles. These simple
typed or sketched annota-
tions just translate along with
the mean translation of an-
chor tracks. This annota-
tion is ideal for simple com-
municative tasks, such as lo-
cal or remote discussions be-
tween collaborators in film
and video production.

Figure 5: Word bal-
loons (footage c©2005
Jon Goldman)

Word balloons. Inspired by
Comic Chat [13] and Ros-
ten et al. [21], our system im-
plements speech and thought
balloons that reside at a fixed
location on the screen, with
a “tail” that follows the an-
notated object. The location
of the speech balloon is op-
timized to avoid overlap with
foreground objects and other
speech balloons, while remaining close to the anchor tracks.

Path arrows. These annotations highlight a particular mov-
ing object, displaying an arrow indicating its motion onto a
plane in the scene. To compute the arrow path we transform
the motion of the centroid of the anchor tracks into the coor-
dinate system of the background group in each frame. The
resulting path is used to draw an arrow that transforms along
with the background. By clipping the path to the current

Figure 6: Path arrows

frame’s edges, the arrow
head and tail can remain vis-
ible on every frame, mak-
ing it easy to determine the
subject’s direction of motion
at any time. We be-
lieve this type of annotation
could be used by surveil-
lance analysts, or to enhance
telestrator-style markup of
sporting events.

Video hyperlinks. Our sys-
tem can also be used to au-
thor dynamic regions of a
video that respond to interac-
tive mouse movements, enabling the creation of hyperlinked
video [6]. A prototype hyper-video player using our system
as a front end for annotation is shown in Figure 7. When
viewing the video on an appropriate device, the user can ob-
tain additional information about annotated objects, for ex-
ample, obtaining purchase information for clothing, or addi-
tional references for historically or scientifically interesting
objects. As a hyperlink, this additional information does not
obscure the video content under normal viewing conditions,
but rather allows the viewer to actively choose to obtain fur-
ther information when desired. The hyperlinked regions in
this 30-second segment of video were annotated using our
interface in about 5 minutes of user time.

Marking occlusions. When an object being annotated is par-
tially occluded, our system can modify an associated anno-
tation’s appearance or location, either to explicitly indicate
the occlusion or to move the annotation to an un-occluded
region. One indication of occlusion is that the tracked parti-
cles in the occluded region are terminated. Although this is
a reliable indicator of occlusion, it does not help determine
when the same points on the object are disoccluded, since
the newly spawned particles in the disoccluded region are
not the same as the particles that were terminated when the
occlusion occurred. Here again we are aided by the group-

Figure 7: A video with highlighted hyperlinks to web pages. (video
footage c©2005 Jon Goldman)

Figure 8: A rectangle created on the first frame sticks to the
background even when its anchor region is partially or completely
occluded. The annotation changes from yellow to red to indicate
occlusion.

ing mechanism, since it associates these points on either side
of the occlusion as long as there are other particles in the
group to bridge the two sets. To determine if a region of the
image instantiated at one frame is occluded at some other
frame, the system simply computes the fraction of particles
in the transformed region that belong to the groups present
in the initial frame. An annotation is determined to be oc-
cluded if fewer than half of the points in the region belong to
the originally-selected groups. Figure 8 shows a rectangular
annotation changing color as it is repeatedly occluded and
disoccluded.

4.2 Video navigation using direct manipulation
Given densely tracked video, we can scrub to a different
frame of the video by directly clicking and dragging on mov-
ing objects in the scene. We have implemented two varia-
tions on this idea: The first uses individual mouse clicks and
drags, and the second uses multiple gestures in sequence.

The single-drag UI is implemented as follows: When the user
clicks at location x0 while on frame t0, the closest track i∗
is computed as in equation (5), and the offset between the
mouse position and the track location is retained for future
use: d = x0 − xi∗(t0). Then, as the user drags the mouse to
position x1, the video is scrubbed to the frame t∗ in which the
offset mouse position x1 + d is closest to the track position
on that frame:

t∗ = argmin{t∈T (i∗)}‖x1 +d−xi∗(t)‖ (9)

Since this action mimics the behaviour of a traditional scroll-
bar or slider, we call it a “virtual slider.” Figures 9 and 10(a-
c) illustrate this behavior.

x0
x1

x +d1d1

Track A

Track B

2 3

4
5

5 6

7

8

Figure 9: When the mouse is depressed at position x0 on frame
2, track A (shown in red) is selected as the virtual slider track.
When the mouse moves to position x1, the location of that track
at frame 3 is closer to the offset mouse position x1 + d, so the
video is scrubbed to frame 3. Track A ends at frame 5, but the
virtual slider is extended to later frames using the next closest
track (track B, shown in blue).

This approach can cause discontinuous jumps in time when
manipulating objects that travel away from and then back to
their original screen locations. Such jumps can be eliminated
by computing distances in (x,y, t) [11] or (x,y,arc-length) [7]
spaces, as demonstrated in contemporaneous work. How-
ever, the discontinuous jumps can actually be preferable in
situations such as that shown in Figure 10, in which the user
searches for a scene configuration without attending to ex-
actly when in the video that configuration occurred. In such
situations, ignoring temporal continuity gives more salient
results and more immediate feedback.

Visualizing range of motion. To represent the range of mo-
tion afforded by a virtual slider, we can display it as a line
or path arrow overlaid on the image. However, for complex
movements this representation may be confusing. There-
fore, we have developed a novel representation for displaying
range of motion: A “starburst” widget is placed at the con-
straint location such that the length of the starburst’s spikes
represent the spatial proximity of nearby frames on the slider.
For simple linear motions the starburst widget simply looks
like a compass with one arm pointing to the direction of
movement forwards in time and another pointing to the di-
rection of movement backwards in time. However, for more
complex motions additional arms begin to appear, indicating
that portions of the range of motion lie in other directions.

To display the starburst widget, we first bin the slider posi-
tions according to their orientation from the current position
xi∗(t0). Then, a weight hθ is computed for each arm using all
the positions in bin Bθ :

vt = xi∗(t) −xi∗(t0) (10)

hθ = ∑
{t|xi∗(t)∈Bθ }

exp
(−||vt ||2/σ2

h
)

(11)

The length lθ of the starburst arm in direction θ is then given
by normalizing and scaling the weights:

lθ = k
√

hθ /∑
ω

hω (12)

where k controls the absolute scaling of the starburst. Longer
arms are given an arrowhead, and bins with no points do not
display any arm at all. This formula is designed to weight the
track locations by a Gaussian distance falloff, so that nearby
points on the slider are weighted more heavily than distant
ones. Since the binning described above can cause aliasing
for slider paths that lie just along the boundaries of the ori-
entation bins, we adjust the orientation of the bins on each
frame using PCA, centering a bin on the dominant direction
of the slider in the local region. Examples of the starburst
manipulators in context can be see in Figures 10 and 11.

Handling occlusions. Because tracks can start and end on
arbitrary frames, it is not always possible to reach a de-
sired frame using a virtual slider constructed from a single
track. Therefore we extend the virtual sliders using multi-
ple tracks, as follows: If the last frame of the selected track
tmax = max [t ∈ T (i∗)] is not the end of the video, and the track
is not at the edge of the frame, the system finds the next clos-
est track j∗ on frame tmax in the same group that extends at

least to tmax +1. The portion of this track that extends beyond
frame tmax is then appended to the virtual slider, offset by the
displacement xi∗(tmax)− x j∗(tmax) between tracks in order to
avoid a discontinuity (see Figure 9). This process is contin-
ued forwards until either the end of the video is reached, or
the virtual slider reaches the edge of the frame, or the next-
closest track is too distant. The process is then repeated in
reverse for the first frame of the track, continuing backwards.

In most cases this algorithm successfully extends the virtual
slider throughout the visible range of the object’s motion, in-
cluding partial occlusions. However, our system does not
track objects through full occlusions, so the virtual slider typ-
ically terminates when the object becomes fully occluded.
In order to overcome short temporary occlusions, we have
added “inertia” to our virtual sliders, inspired by the inertial
scrolling feature of Apple’s iPhone: During mouse motion
we track the temporal velocity of the virtual slider in frames
per second. When the mouse button is released, this veloc-
ity decays over a few seconds rather than instantaneously. In
this way, the user can reach frames just beyond the end of
the virtual slider by “flicking” the mouse toward the end of
the slider. This feature complements the accurate frame se-
lection mechanism by providing a looser long-distance frame
selection mechanism.

Some virtual sliders may have paths that fold back on them-
selves, or even spiral around, so that a linear motion of the
mouse will jump nonlinearly to different frames. In this case,
the temporal velocity of the slider when the mouse is released
is not meaningful. Instead, we can retain the spatial con-
straint for several seconds, advancing its location using the
spatial velocity of the mouse pointer before the button was
released.

Unfortunately, spatial inertia cannot be used in all cases, be-
cause unlike temporal inertia, there is no way to reach past
the end of the virtual sliders: Tracks do not extend beyond the
boundaries of the video frame. Therefore our virtual sliders
automatically choose between temporal inertia and spatial in-
ertia by examining the predicted next position of the virtual
slider: If they are in similar directions, temporal inertia is
used. If they are in different directions, spatial inertia is used.
We have found this heuristic tends to perform intuitively in
most cases.

Multiple constraints. By extending the scrubbing technique
described above to multiple particle paths, we also imple-
ment a form of constraint-based video control. The user sets
multiple point constraints on different parts of the video im-
age, and the video is advanced or rewound to the frame that
minimizes the maximum distance from each particle to its
constraint position. Here, c indexes over constraint locations
xc, offsets dc, and constrained particles i∗c , and C is the set of
all constraints:

t∗ = argmin{t∈T (i∗)} max
c∈C

‖xc +dc −xi∗c (t)‖ (13)

In our current mouse-based implementation, the user can
sequentially set a number of fixed-location constraints and
one dynamic constraint, controlled by the mouse. However,
multiple dynamic constraints could be applied using a multi-

(a) (b) (c) (d) (e)

Figure 10: Our scrubbing interface is used to interactively manipulate a video of a moving head by dragging it to the left and right (a-c).
Nearby frames are indicated by longer starburst arms. At the extremes of motion (c), some arms of the starburst disappear. Additional
constraints are applied to open the mouth (d), or keep the mouth closed and smile (e).

touch input device. Figures 10(d) and 10(e) illustrate facial
animation using multiple constraints.

To balance multiple constraints, we employ a max function
in Equation 13 instead of a sum, because this function has
optima at which the error for two opposing constraints is
equal. As a simple example, consider two objects in a 1-
dimensional scene that travel away from the origin at two
different speeds: xa(t) = vat,xb(t) = vbt,va
= vb. Now imag-
ine that these objects are constrained to positions x∗a and x∗b
respectively. If we were to use a sum of absolute values
|vat − x∗a|+ |vbt − x∗b| as our cost function, it would be mini-
mized at either t = x∗a/va or t = x∗b/vb: One of the constraints
will be met exactly while the other is ignored! Using the
sum of squared errors for our cost function does not solve this
problem, as it also meets the constraints unequally. However,
by using the maximum distance in our cost function, the er-
ror is made equal for the two most competing constraints at
the optimum.

4.3 Video-to-still composition
Another application enabled by our system is the seamless
recomposition of a video into a single still image featuring
parts of several different frames of the video. For exam-
ple, one might wish to compose a still image from a short
video sequence featuring multiple participants. Although
there may be frames of the video in which one or two sub-
jects are in frame, looking at the camera, and smiling, there
may be no one frame in which all of the subjects look good.
However, by using different frames of the video for different
subjects we may be able to compose a single still frame that is
better than any individual video frame in the sequence. Prior
work [1] assumes that the number of frames is small enough
that a user can examine each frame individually to find the
best frame for each subject. Such interfaces are therefore
less appropriate for video input.

In our system, we take a drag-and-drop approach to video
recomposition. Virtual sliders, as described in the previous
section, are used to navigate through the video. In addition,
we display only the video object under the mouse at the new
frame, and the rest of the objects are “frozen” at their previ-
ous frame. This is accomplished as follows:

First, if the camera is moving, we estimate the motion of
the background as a homography, using the group with the
largest number of tracked points to approximate the back-
ground. Subsequently, when other frames are displayed, they
are registered to the current frame using the estimated back-
ground motion, and all virtual slider paths are computed us-

ing the registered coordinate frame1. As the mouse button
is dragged and the frame changes, a rough mask of the ob-
ject being dragged is computed using the same connected-
components search described in Section 3. This mask is used
to composite the contents of the changing frame over the pre-
viously selected frame. In this way, these regions appear to
advance or rewind through time and the object moves away
from its previous location. We also composite the new frame
contents within the matte of the object at the frame upon
which the mouse button was depressed, in order to remove
its original appearance from that region of the image. Al-
though this is not guaranteed to show the proper contents of
that image region (for example, a different object may have
entered that region at the new frame), it is simple enough to
run at interactive rates and usually produces plausible results.
When the mouse button is released, a final composite is com-
puted using graph cut compositing [1] with the object mask
as a seed region, removing most remaining artifacts. An il-
lustration of drag-and-drop video recomposition is shown in
Figure 11.

Our system also supports another type of still composition
using video; the schematic storyboards described by Gold-
man et al. [8]. In that work, the user selected keyframes
from an exhaustive display of all the frames in the video, and
manually selected and labeled corresponding points in each
of those frames. In contrast, our interface is extremely sim-
ple: The user navigates forward and backward in the video
using either a standard timeline slider or the “virtual slider”
interface, and presses a “hot key” to assign the current frame
as a storyboard keyframe. When the first keyframe is se-
lected, the interface enters “storyboard mode,” in which the
current frame is overlaid atop the storyboard as a ghosted im-
age, in the proper extended frame coordinate system. Chang-
ing frames causes this ghosted image to move about the win-
dow, panning as the camera moves. The user can add new
keyframes at any time, and the layout is automatically re-
computed. As described by Goldman et al., the storyboard
is automatically split into multiple extended frames as neces-
sary, and arrows can be associated with moving objects using
the object selection and annotation mechanisms already de-
scribed. The resulting interaction is much easier to use than
the original Goldman et al. storyboards work.

5 INFORMAL EVALUATION
We believe the tools we have demonstrated are largely unique
to our system. However, it is possible to associate annota-
tions to video objects using some visual effects and motion

1This is identical to the “relative flow dragging” described by Dragice-
vic et al. [7]

Figure 11: Drag-and-drop composition of a still from video. The black car is to the right of the white car on all frames of the input video. From
left to right, the black car is dragged from its location on frame 1 to a new location on frame 66. The first three panels show the appearance
during the drag interaction, and the fourth panel shows the final graph cut composite, which takes about 5 seconds to compute. Unlike a
traditional image cut/paste, the black car appears larger as it is dragged leftwards, because it is being extracted from a later video frame.

graphics software. We asked a novice user of Adobe Af-
ter Effects – a commercial motion graphics and compositing
tool with a tracking module – to create a single translating
“scribble” text annotation on the car shown in Figure 8. With
the assistance of a slightly more experienced user, the novice
spent over 20 minutes preparing this test in After Effects.

However, since After Effects is targeted at professionals, we
also asked an expert user – a co-inventor and architect of Af-
ter Effects – to perform the same annotation task using both
After Effects and our “graffiti” tool. We gave him a quick 1
minute introduction to our tool, then asked him to annotate
both the car and the crosswalk stripe with a deforming text
label, as shown in Figure 3. Using our tool, which he had
not previously used, he completed the task in just 30 seconds
using 10 mouse clicks and 12 keystrokes. Using After Ef-
fects, the same task took 7 minutes and 51 seconds, using
over 74 mouse clicks, 52 click-and-drags, and 38 keystrokes.
In a second trial he performed the same task in 3 minutes and
55 seconds, using over 32 mouse clicks, 36 click-and-drags,
and 34 keystrokes. Although After Effects offers more op-
tions for control of the final output, our system is an order of
magnitude faster to use for annotation because we perform
tracking beforehand, and we only require the user to gestu-
rally indicate video objects, annotation styles and contents.

We also assessed the usability and operating range of our
system by using it ourselves to create storyboards for ev-
ery shot in the 9-minute short film, “Kind of a Blur” [9].
The main body of the film (not including head and tail credit
sequences) was manually segmented into 89 separate shots.
Of these, 25 were representable as single-frame storyboards
with no annotations. For the remaining 64 shots, we prepro-
cessed progressive 720× 480 video frames, originally cap-
tured on DV with 4:1:1 chroma compression. Of the 64
shots attempted, 35 shots resulted in complete and accept-
able storyboards. The remaining 29 were not completed sat-
isfactorily for the following reasons (some shots had multiple
problems). The particle video algorithm failed significantly
on seventeen shots: Eleven due to motion blur, three due to
large-scale occlusions by foreground objects, and three due
to moving objects too small to be properly resolved. Of the
remaining twelve shots, the grouping algorithm failed to con-
verge properly for five shots. Six shots included some kind
of turning or rotating object, but our system only effectively
annotates translating objects. Nine shots were successfully
pre-processed, but would require additional types of annota-
tions to be effectively represented using storyboard notation.
Although additional work is needed to expand our system’s
operating range, these results show promise for our approach.

5.1 Limitations
One important limitation of our system is the length of time
required to preprocess video. In our current implementation,
the preprocess takes up to 5 minutes per frame for 720×480
input video, which is prohibitive for some of the potential
applications described here. Although most of the preprocess
is highly parallelizable, novel algorithms would be necessary
for applications requiring “instant replay.”

Many of the constraints on our method’s operating range
are inherited from the constraints on the underlying parti-
cle video method. This approach works best on sequences
with large textured objects moving relatively slowly. Small
moving objects are hard to resolve, and fast motion intro-
duces motion blur, causing particles to slip across occlusion
boundaries. Although the particle video algorithm is rela-
tively robust to small featureless regions, it can hallucinate
coherent motion in large featureless regions, which may be
interpreted as separate groups in the motion grouping stage.

Another drawback is that when a video features objects with
repetitive or small screen-space motions — like a subject
moving back and forth along a single path, or moving di-
rectly toward the camera — it may be hard or impossible to
reach a desired frame using the cost function described in
Equation 9. Other cost functions have been proposed to infer
the user’s intent in such cases [12, 7, 11].

6 DISCUSSION
We have presented a system for interactively associating
graphical annotations to independently moving video ob-
jects, navigating through video using the screen-space mo-
tion of objects in the scene, and composing new still frames
from video input using a drag-and-drop metaphor. Our con-
tributions include the application of an automated preprocess
for video interaction, a fluid interface for creating graphical
annotations that transform along with associated video ob-
jects, and novel interaction techniques for scrubbing through
video and recomposing frames of video. The assembly of
a well-integrated system enabling new approaches to video
markup and interaction is, in itself, an important contribu-
tion. Our system performs all tracking and grouping of-
fline before the user begins interaction, and our user inter-
face hides the complexity of the algorithms, freeing the user
to think in terms of high-level goals such as the placements
of objects and the types and contents of their annotations,
rather than low-level details of tracking and segmentation.

We believe our preprocessing method is uniquely well-suited
to our applications. In particular, the long-range stability
of the particle video tracks simplifies the motion grouping
algorithm with respect to competing techniques: We had
initially implemented the feature-based approach described

by Sivic et al. [26], but encountered several important draw-
backs of their approach for our interaction methods. First,
the field of tracked and grouped points is relatively sparse,
especially in featureless areas of the image. This scarcity of
features makes them less suitable for the types of interactive
applications that we demonstrate. Second, affine-covariant
feature regions are sometimes quite large, and may therefore
overlap multiple moving objects. (Both of these drawbacks
also are problematic in the method of Dragicevic et al. [7].)
However, a drawback of our grouping method is that it does
require the number of motion groups to be specified a priori.

Although they work remarkably well, we do not consider our
tracking and grouping algorithms to be a central contribution
of this work. However, we find it notable that so much inter-
action is enabled by such a straightforward preprocess. We
have no doubt that future developments in computer vision
will improve upon our results, and we hope that researchers
will consider user interfaces such as ours to be an important
new motivation for such algorithms.

In conclusion, we believe interactive video object manipula-
tion can become an important tool for augmenting video as
an informational and interactive medium, and we hope this
research has advanced us several steps closer to that goal.

Acknowledgments
The authors thank Peter Sand for the use of his source code,
Sameer Agarwal and Josef Sivic for discussions about mo-
tion grouping, Nick Irving at UW Intercollegiate Athletics
for sample video footage, and Harshdeep Singh, Samreen
Dhillon, Kevin Chiu, Mira Dontcheva and Sameer Agarwal
for additional technical assistance. Special thanks to Jon
Goldman for the use of footage from his short film Kind of
a Blur [9]. Amy Helmuth, Jay Howard, and Lauren Mayo
appear in our video. Funding for this research was provided
by NSF grant EIA-0321235, the University of Washington
Animation Research Labs, the Washington Research Foun-
dation, Adobe, and Microsoft.

References

1. A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Col-
burn, B. Curless, D. Salesin, and M. Cohen. Interactive dig-
ital photomontage. ACM Trans. Graph. (Proc. SIGGRAPH),
23(4):294–301, 2004.

2. A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz.
Keyframe-based tracking for rotoscoping and animation. ACM
Trans. Graph. (Proc. SIGGRAPH), 23(3):584–591, 2004.

3. ASTAR Learning Systems. http://www.astarls.com,
2006. [Online; accessed 5-January-2008].

4. C. Bregler, M. Covell, and M. Slaney. Video rewrite: Driving
visual speech with audio. In Proc. SIGGRAPH 97, pages 353–
360, 1997.

5. Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and
R. Szeliski. Video matting of complex scenes. ACM Trans.
Graph., 21(3):243–248, 2002.

6. J. Dakss, S. Agamanolis, E. Chalom, and V. M. Bove Jr. Hyper-
linked video. In Proc. SPIE, volume 3528, pages 2–10, 1999.

7. P. Dragicevic, G. Ramos, J. Bibliowicz, D. Nowrouzezahrai,
R. Balakrishnan, and K. Singh. Video browsing by direct ma-
nipulation. In CHI, pages 237–246, 2008.

8. D. B Goldman, B. Curless, S. M. Seitz, and D. Salesin.
Schematic storyboarding for video visualization and editing.
ACM Trans. Graph. (Proc. SIGGRAPH), 25(3):862–871, 2006.

9. J. Goldman. Kind of a Blur. http://phobos.apple.
com/WebObjects/MZStore.woa/wa/viewMovie?id=
197994758, 2005. [Short film available online; accessed
5-January-2008].

10. R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision, page 109. Cambridge University Press,
ISBN: 0521540518, second edition, 2004.

11. T. Karrer, M. Weiss, E. Lee, and J. Borchers. DRAGON: A
direct manipulation interface for frame-accurate in-scene video
navigation. In CHI, pages 247–250, 2008.

12. D. Kimber, T. Dunnigan, A. Girgensohn, F. Shipman, T. Turner,
and T. Yang. Trailblazing: Video playback control by direct
object manipulation. In ICME, pages 1015–1018, 2007.

13. D. Kurlander, T. Skelly, and D. Salesin. Comic chat. In SIG-
GRAPH ’96, pages 225–236, 1996.

14. Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste. ACM
Trans. Graph. (Proc. SIGGRAPH), 24(3):595–600, 2005.

15. C. Morningstar and R. F. Farmer. The lessons of Lucasfilm’s
Habitat. In M. Benedikt, editor, Cyberspace: First Steps, pages
273–301. MIT Press, Cambridge, MA, 1991.

16. Y. Pritch, A. Rav-Acha, A. Gutman, and S. Peleg. Webcam
synopsis: Peeking around the world. In Proc. ICCV, pages 1–
8, 2007.

17. Y. Pritch, A. Rav-Acha, and S. Peleg. Non-chronological video
synopsis and indexing. IEEE Trans. PAMI, 2008. (to appear).

18. G. Ramos and R. Balakrishnan. Fluid interaction techniques
for the control and annotation of digital video. In Proc. UIST
’03, pages 105–114, 2003.

19. A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg. Dynamo-
saicing: Video mosaics with non-chronological time. In Proc.
CVPR, pages 58–65, 2005.

20. A. Rav-Acha, Y. Pritch, and S. Peleg. Making a long video
short: Dynamic video synopsis. In Proc. CVPR, pages 435–
441, 2006.

21. E. Rosten, G. Reitmayr, and T. Drummond. Real-time video
annotations for augmented reality. In Proc. Intl. Symp. on Vi-
sual Computing, 2005.

22. P. Sand. Long-Range Video Motion Estimation using Point Tra-
jectories. PhD thesis, MIT, 2006.

23. P. Sand and S. Teller. Particle video: Long-range motion es-
timation using point trajectories. In Proc. CVPR ’06, pages
2195–2202, 2006.

24. A. Schödl and I. A. Essa. Controlled animation of video sprites.
In Proc. ACM/Eurographics Symp. on Comp. Animation, pages
121–127, 2002.

25. A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. Video tex-
tures. In SIGGRAPH ’00, pages 489–498, 2000.

26. J. Sivic, F. Schaffalitzky, and A. Zisserman. Object level group-
ing for video shots. Intl. J. of Comp. Vis., 67(2):189–210, 2006.

27. J. M. Smith, D. Stotts, and S.-U. Kum. An orthogonal tax-
onomy for hyperlink anchor generation in video streams using
OvalTine. In Proc. ACM Conf. on Hypertext and Hypermedia,
pages 11–18, 2000.

28. Sportvision. Changing The Game. http://www.
sportvision.com, 2006. [Online; accessed 5-January-2008].

29. J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Co-
hen. Interactive video cutout. ACM Trans. Graph. (Proc. SIG-
GRAPH), 24(3):585–594, 2005.

30. Wikipedia. Telestrator. http://en.wikipedia.org/w/
index.php?title=Telestrator&oldid=180785495,
2006. [Online; accessed 5-January-2008].

31. A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey.
ACM Computing Surveys, 38(4):13, December 2006.

32. L. Zhang, N. Snavely, B. Curless, and S. Seitz. Spacetime
faces: high resolution capture for modeling and animation.
ACM Trans. Graph. (Proc. SIGGRAPH), 23(3):548–558, 2004.

