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Abstract
Sensor-actuator networks (SANs) are a new approach for the
physically-based animation of objects. The user supplies the con-
figuration of a mechanical system that has been augmented with
simple sensors and actuators. It is then possible to automatically
discover many possible modes of locomotion for the given object.
The SANs providing the control for these modes of locomotion
are simple in structure and produce robust control. A SAN con-
sists of a small non-linear network of weighted connections
between sensors and actuators. A stochastic procedure for finding
and then improving suitable SANs is given. Ten different crea-
tures controlled by this method are presented.

CR Categories: G.3 [Probability and Statistics]: Probabilistic
Algorithms; I.2.6 [Artificial Intelligence]: Learning, Robotics;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism - animation; I.6.3 [Simulation and Modeling] - Appli-
cations.

1.0 Introduction
Many recent investigations have involved the use of physical sim-
ulations for creating life-like animations of creatures. The prob-
lem is less one of simulation than it is of control: how should the
muscles in the creature act to make it move in a desired way?
Once known, the forces and torques produced by the muscles can
be used as input to a physical simulation to obtain the resulting
motion.

Broadly speaking, there exist two approaches to this problem. The
first is to apply the laws of physics as constraints on the motion of
the various parts of the creature while at the same time optimizing
a given goal function. This goal function may be something like
‘‘get from point A to point B in the fastest way’’. An initial guess
at the possible trajectory of the creature is iteratively refined until
a trajectory is produced that both satisfies the physics constraints
and optimizes the goal function.

The second approach is to synthesize a controller. A controller
makes control decisions based upon sensory information pres-

ently available and does not explicitly calculate a trajectory. A con-
troller thus makes use of feedback to perform its task. Our
solutions, called sensor-actuator networks (SANs) are in the form
of controllers. There are two main novel features of SAN control-
lers. First, they are entirely sensor-based. Control solutions are usu-
ally cast into a form where sensory information is processed to
produce an estimate of the system state. For mechanical systems,
the state is the tuple of values sufficient to specify the position and
velocity of every point on the object. SANs have no notion of the
state of the system as conventionally defined. Second, the stochas-
tic synthesis procedures used to create SANs are unique and pow-
erful tools.

A principal advantage of our method is that it requires less knowl-
edge to use than other physically-based animation systems. The
user provides the construction of a creature and can then ask the
question ‘‘how would it move?’’ Our method can then yield several
controllers providing feasible modes of locomotion (there is no
guarantee that a suitable controller will be found). We have been
surprised with many of the modes of locomotion discovered. Even
the simplest objects are capable of a large repertoire of interesting
motions. Many of the controllers generated using our method can
take advantage of phenomena such as surface friction or collision
impact, which can be simulated but are hard to incorporate in many
optimization methods.  Figure 1 shows modes of locomotion dis-
covered for 4 different creatures.

A sensor-actuator network is a non-linear network of weighted
connections between a small number of binary sensors and the
actuators (the muscles of our creatures). The network has internal
delays, thereby giving it dynamic properties. In this paper we pro-
vide a method for determining the parameters associated with
SANs in order to obtain instances of a desired behaviour. We show
that SANs can be used to control a variety of interesting creatures.

The next section relates our work to important previous work. Sec-
tion 3 discusses how to construct a creature. Section 4 presents the
architecture of SANs. Section 5 gives the algorithms for synthesiz-
ing and fine-tuning SANs. Section 6 presents a variety of results,
and section 7 concludes.

FIGURE 1. Some modes of locomotion using SANs



2.0 Background
Developing control solutions for arbitrary dynamical systems is a
difficult problem. Consequently, control solutions are  usually
specific to a constrained class of control problems. We briefly
consider various classes of control problems applicable to anima-
tion and their solution techniques.

Linear systems are often the simplest to control. A linear system
can be written in the form  where  is the state vector.
Brotman and Netravali[5] applied linear control theory to the ani-
mation of some linear systems. Unfortunately, most interesting
systems are very non-linear.

We shall define smooth systems as being those that are not neces-
sarily linear, but whose state variables are  continuous over
time. This implies positions and velocities are  and  contin-
uous, respectively. This notably excludes mechanical systems that
undergo collisions, which instantaneously lose velocity. Smooth
systems have states that follow a continuous trajectory through
state-space. The solution to smooth control problems typically
involves iteratively refining a state trajectory[6][17][24] or per-
forming dynamic programming[8][22]). Solutions to smooth
problems are often useful for animation. The take-off and aerial
trajectories of many jumping motions fall within this class.

Statically stable systems are those that can be effectively con-
trolled through kinematic means. This means that the motion of a
creature can be halted in mid-action and then resumed without it
falling over or otherwise collapsing. These can often be con-
trolled by a cyclic motion passing through the body or legs. Real-
istic animations of snakes and worms[14] and a cockroach[13]
have been performed using suitable controllers.

Specialized controllers have been constructed for many systems
through careful analysis and simplification of the motions
involved. Examples of interesting specialized controllers for
walking, hopping, swinging, and juggling are given in
[9][18][20][21]. The work in Making Them Move[1] presents a
variety of specific solutions to control problems in animation.

We shall deal with a class of control problems in which the sys-
tems are non-linear, non-smooth, and not statically stable. A large
number of crawling, jumping, hopping, flipping, and walking
creatures fall in this category. Our sensor-actuator networks
(SANs) prove to be particularly adept at controlling creatures in
this class. It is difficult to try to perform an optimization that
incorporates discontinuities. It should be noted, however, that it is
not difficult to simulate many systems of this class.We shall use
this to our advantage by performing repeated  trials to determine a
suitable controller. This means that a minimal knowledge of the
physics of the mechanical system is required. We carry out our tri-
als using physical simulations, although they could equally well
be carried out directly on the real objects in principle.

Our work has similarities with the work of Wilhelms and Skin-
ner[23] and Braitenberg[3]. Both discuss controllers constructed
using weighted connections between sensors and actuators (or
effectors), possibly through intermediate nodes of some kind.
Braitenberg presents a series of thought experiments showing that
such networks are capable of producing complex and seemingly
intelligent behaviour. Wilhelms and Skinner allow the user to
interactively construct the mapping between sensors and actua-
tors. Their creature consists of a rigid body that can propel itself
in three dimensions using a jet. Several different kinds of nodes
are suggested for use in the connection network. Examples of
attraction and avoidance behaviours can be constructed using
their approach. Our work will show that SANs, which are similar
networks, can be automatically synthesized and can be used to
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control a large variety of physically realizable creatures. Further-
more, we show it is only necessary to consider one kind of network
node.

Our synthesis technique embodies a generate-and-test philosophy
that can also be found in some other recent work. Ngo and
Marks[16] use it to achieve similar goals to ours. Maes and
Brooks[11] learn to coordinate leg motions for an insect robot.
Sims uses the same notion to produce striking images[19]. A dis-
cussion of search-based control methodology is given in [15].

McGeer’s work on passive walking[12] illustrates the phenomenon
of mechanical systems reaching and maintaining stable limit
cycles. Such attractors or limit cycles have also been studied in
neural networks and have been conjectured as being the basis for
behavioural action in nervous systems. In our work, the dynamical
system consisting of the SAN and the creature has a propensity for
such limit cycles, in which case it results in periodic motions, some
of which are the useful gaits we are looking for.

SANs are similar in topology to many artificial neural networks
(ANNs), but are different in several respects. Non-recurrent ANNs
have no internal delays and thus provide a static input-output map-
ping. Furthermore, the synthesis method we employ does not use
derivative-based learning methods.

SANs are loosely related to Brooks’ work[4] on subsumption
architectures for the control of mobile robots. The subsumption
architecture is used to implement control at various levels in a con-
trol hierarchy. Beer presents a model of an insect nervous system
that produces interesting behaviour[2].

3.0 Constructing a Creature
The details of our method are best described through the use of an
example. We shall use the bounder creature, shown in Figure 2.
The bounder consists of 5 links, has 4 angular actuators, and 8
binary sensors. SANs take the binary sensor values as inputs and
produce a set of desired angles or lengths as outputs. These desired
values are used by proportional-derivative (PD) controllers to
determine the internal torques or forces to apply. A PD controller is
functionally equivalent to a spring and damper between the desired
position and current position of a link. We shall now discuss each
of the components of a creature in more detail and then discuss our
simulator.

3.1 Mechanical Configuration
The user begins by specifying the desired mechanical configuration
for the creature. All our creatures are built of rigid links and have
planar dynamics, most of them operating in a vertical plane (i.e.,
under the influence of gravity). This is a limitation of our current
implementation rather than the technique in general. As we shall
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FIGURE 2. The bounder



soon see, planar creatures can have a very large repertoire of
interesting behaviours. Specifying the physical structure of the
creature requires specifying the mass, moment of inertia, and
shape of each link, as well as how they are connected with joints.

3.2 Sensors
All sensors for our creatures are binary. If a sensor is ‘on,’ it pro-
duces a value of 1; otherwise it produces a 0. We currently use the
four kinds of sensors shown in Figure 3. Touch sensors (e.g., S1
and S2 for the bounder) turn on when in contact with the ground
and otherwise remain off. Angle sensors (e.g., S3-S8) determine
if the angle of a limb is within the fixed range determined by the
minimum and maximum angle specified for the sensor. This angle
is measured relative to the link it is attached to, and the zero posi-
tion is indicated with a dashed line in the creature diagrams. Eye
sensors turn on if the follow point is in their cone of view. The fol-
low point is a point to which some of our creatures will be
attracted. One can thus control these creatures by dragging the
follow point in front of them along a desired path. The cone of
view for an eye is defined by a minimum and maximum angle.
The zero-degree reference for eyes is shown in the creature dia-
grams with a dashed line. Length sensors are similar to angle sen-
sors, but measure linear distances.

Sensors are added to a creature after the mechanical configuration
has been designed. It is necessary to use some intuition and cre-
ativity in deciding what sensors will be useful to a creature. Touch
sensors are useful for points expected to be in contact with the
ground. Angle sensors are useful for detecting when a limb has
reached the end of its swing. Eye sensors are necessary to be able
to track a follow point. Length sensors are useful in the control of
linear actuators. The total number of sensors should also be con-
sidered. Too many or too few sensors can introduce problems for
the network synthesis technique to be outlined shortly.

3.3 Actuators
We shall use two kind of actuators in our creatures: linear and
angular. These are shown in Figure 4. Specifying an angular actu-
ator requires specifying the joint concerned, the upper and lower
limits that the desired angle can take (measured in degrees in our
creature diagrams), and specifying the strength of the actuator.

The strength of an actuator is determined by the constants  and
 associated with the PD controller for the joint. An angular

actuator generates an internal joint torque ,
while a linear actuator generates a force .
For many motions, choosing /  = 0.10 provides suitable ener-
getic motions with some damping. The value of  can often be
chosen by doing a simple calculation. For example, a 10 degree
deflection of limb L5 of the bounder should give a large enough
force to support half the body weight when the leg is bent. A sim-
ple calculation will produce = 0.4 Nm/deg, which is used for all
the actuators in the bounder. No hard joint limits are provided by
the actuators, although they can of course be implemented in the
simulaton if desired.

Length actuators are similar to angular actuators, except that they
exert linear forces between a pair of points. Besides the two
points, the minimum and maximum desired length allowable for

FIGURE 3. Sensor types
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the actuator must be specified, as well as its strength. As with the
angular actuators, the strength of the actuator is determined by its

 and  constants.

3.4 Dynamics Simulation
Generating and using SANs requires only the capability to simulate
the dynamics of a system. It is, however, beneficial to have a fast
dynamics simulator, as our method for generating suitable SANs
requires many simulation trials.

We make use of a dynamics compiler that uses the mechanical con-
figuration information to generate a ‘C’ procedure which solves the
equations of motion for a single time step. The procedure generates
and solves a set of linear equations Ax = b, where x is the set of
unknown accelerations. The elements in A and b are functions of
the system state, the physical parameters of the system, the internal
torques, and external forces. A recursive Newton-Euler formula-
tion is used. This is  in the number of links and is quite suit-
able for .

The creatures are treated as free bodies in space. The external
forces applied by the ground are calculated using stiff spring and
dampers. We favour this approach as being simpler and more flexi-
ble than the alternative choice of reformulating the equations of
motion upon impact of a link with the ground. The coefficient of
friction of the ground can be set to a desired value. Other physical
phenomena such as wind and water forces are easily added in as
external forces. For example, for our fish creature, we calculate the
water force for each link as , where
defines the component of the velocity in the direction of the surface
normal and  is the surface area of the link.

4.0  Sensor-Actuator Networks
SANs provide control by connecting sensors to actuators through a
network of weighted connections. We will discuss in the next sec-
tion the important question of how to determine the weight values.
This section describes the structure and operation of SANs

A simplified example of a SAN is shown in Figure 5. The network
consists of nodes and unidirectional weighted connections. The
weights of the connections can take on values in a fixed range. In
our implementation we choose integer values in the range [-2,2].
As shown, there are three kinds of nodes: sensor nodes, hidden
nodes, and actuator nodes. The sensor nodes are fully connected to
all hidden nodes and actuator nodes. All hidden nodes and actuator
nodes are fully interconnected. The number of hidden nodes is usu-
ally chosen to be approximately equal to the number of sensor
nodes. For example, the SANs for the bounder have 8 sensor
nodes, 8 hidden nodes, and 4 actuator nodes.

Sensor nodes take on the values of their associated sensors. The
hidden and actuator nodes function as shown in Figure 6. A node
sums the weighted inputs and outputs a ‘1’ if the sum is positive.
This is a function similar to those performed in neural networks. It
is important, however, for the controller to be a dynamical system
on its own. This is effected by having a time delay associated with
the operation of each node. This delay is implemented with the
integrator and the following hysteresis function. The constants
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and  provide control over the time delay for a node to turn on
and off, respectively. A hysteresis function is used instead of a
simple threshold function to prevent the node output from chatter-
ing when some sensors make only momentary contact.

Actuator nodes make direct use of the result of the summing oper-
ation at a node to determine the desired angle or length of the
actuator. The sum is first bounded to lie in  a fixed range and is
then linearly mapped to the length or angle range of the actuator.
We bound the sum to the range [-2,2] in our implementation.

The function of a node is both simple to program and to build
directly in hardware. The code implementing the functionality of
a node is shown in Figure 7. The variable ‘istate’ is the internal
state of a node associated with the integrator. We initialize istate
to zero for all nodes at the start of a simulation. A hardware
implementation would require three resistors, a capacitor, and
three opamps per node.

The constants  and  should be chosen in relation to the
expected duration of a periodic locomotion cycle for the creature.
Thus the node delays for an elephant should be much larger than
those for a mouse. The delays are given by  and

 (note: ). Typically, good results can be
obtained with , where  is the expected
duration of one locomotion cycle. The delays used for all of our
examples fall in the range of 0.07-0.15s. Because of the delays
and the internal interconnectivity, the SAN has dynamic proper-
ties of its own that are important for generating useful control net-
works. We view the motions that the SANs produce as being the
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FIGURE 5. Topology of a sensor-actuator
network
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FIGURE 7. Code corresponding to node function

result of two interacting dynamical systems, that of the SAN and
that of the creature itself. One can also think of SANs as being sim-
ilar in function to the oscillators hypothesized to exist in some ani-
mals[13]. When the node delays were removed and the node
functions were made more linear in several experiments, it most
frequently resulted in a creature that rested in an immobile state
after some initial motion. It is perhaps no coincidence that these are
exactly the features that make the SANs operate as interesting
oscillators by themselves.

5.0 Network Synthesis
We have now defined the construction of creatures and the struc-
ture of SANs, but we still need a method to obtain the weight val-
ues in the SAN. These will ultimately determine a creature’s
behaviour. Before outlining our solution, let us briefly consider
another possible approach. Consider a top-down method whereby
we assume we know the type of motion or desired gait and must
now determine the details to generate it. Such an approach has sev-
eral problems. First, it is often difficult to come up with the desired
gait, especially if the creature has no counterpart in nature. Many
of our creatures are capable of modes of locomotion that we never
could have conceived of beforehand. Second, motion in the desired
way might be physically impossible for the creature. We wish to
restrict our search to strictly those solutions that are physically fea-
sible. Lastly, the non-linear nature of the creature and its sensing
devices makes any such top-down synthesis a very difficult task.

The top-down approach tries to determine a controller given a
desired behaviour. The bottom-up approach that we shall take
repeatedly generates and evaluates controllers (through simula-
tions) until one or several are found that have desirable behaviours.
We thereby exploit the fact that the simulation function is much
less expensive than the top-down synthesis function. We have
found that the SAN architecture defines a controller space that is
highly populated with useful controllers.

Our network synthesis procedure consists of two phases. Phase 1
involves random SAN generation and evaluation. Phase 2 takes the
best SAN controllers found in phase 1 and improves upon them.
These two phases together define a coarse-to-fine strategy in
searching for suitable controllers.

5.1 The Evaluation Metric
An evaluation metric is required for being able to determine the
quality of a motion generated by any given SAN. For most of our
creatures, this is simply the distance travelled in a fixed amount of
time: . The creatures that travel the furthest are
usually the ones that have an interesting mode of locomotion. We
do usually not care whether the creature moves to the right or the
left because both can yield interesting motions. The evaluation
metric can be further qualified to be the distance travelled without
falling over. For such events we set the evaluation metric to zero.
To obtain a controller with energetic hops, the average height of the
creature can be incorporated into the evaluation metric:

. For creatures that should make use of
their eye sensors to track a follow-point, the evaluation metric is:

, where  is the velocity of the creature
and  the unit vector pointing towards the follow point. This met-
ric is a simple measure of how well pursuit is maintained.

5.2 Phase 1: Random Generation and Evaluation
A controller is generated at random by choosing all of its weights
at random. This is roughly equivalent to randomly selecting the
reactions to be associated with each sensor. A randomly generated
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SAN is then evaluated by simulating the behaviour of the creature
with the SAN controller and calculating the evaluation metric.

The random search performed by phase 1 is used to discover dif-
ferent possible modes of locomotion for a creature. For this pro-
cess to be an effective synthesis method, however, we must have
some reasonable expectation of finding desirable controllers. At
first glance, this does not seem a likely proposition. The space
being randomly sampled is very large. For our bounder example it
contains  possible samples: each of the 240 weights can take
any of 5 values. Furthermore, there is no guarantee that any point
in this space corresponds to a useful controller.

It is our hypothesis that within the large search space there are
many pockets containing useful weight combinations. While the
SAN architecture clearly imposes a structure on the solutions, it is
not obvious how to search this space. We have found that our
dart-throwing strategy is successful a small but significant propor-
tion of the time. The distribution of controllers ranked according
to the evaluation metric is a sharply decreasing function with a
long tail. Typically 1-5% of the random SANs result in useful
motions. This has limitations; as creatures get more complex (6 or
more links), fewer candidate motions are aesthetically pleasing.

5.3 Phase 2: Fine Tuning
A second fine-tuning phase may be applied to improve the con-
trollers obtained as a result of the first phase. The fine-tuning
phase makes small adjustments to some of the parameters of the
SAN and the creature to improve its performance. The weights
chosen in the previous step are not among the parameters to be
adjusted, however. Because of the non-linear operation of the
nodes in the SAN, small changes in the weights often result in
either no change at all or a very large change in the dynamics of
the system.

The parameters we shall adjust in the fine-tuning phase are those
associated with the sensors and the actuators, as well as the delays
for the hidden nodes. This list of parameters is shown in Figure 8.
We wish to retain the same fundamental mode of locomotion but
evolve the values of some of the parameters to obtain an improved
gait. There are 4 parameters to adjust for each actuator, 2 for each
network node, and 2 for each sensor. For our bounder, this results
in a total of 44 adjustable parameters.

The approach taken in phase 2 is to make small positive or nega-
tive perturbations to randomly chosen parameters. Evaluations are
then performed to see if a given change improves the result. We
consider two different approaches for performing and evaluating
the parameter changes. These are stochastic gradient ascent
(SGA) and simulated annealing (SA). These two approaches are
distinguished in that one searches for a local optimum, while the
second searches for a global optimum.

The structure of the SGA algorithm is shown in Figure 9. The
simulated annealing algorithm used is equivalent to that described
in [7] and [10]. The simulated annealing algorithm accepts some
parameter changes that result in worse performance in order to be
able to escape local minima (or maxima in our case). Both algo-
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FIGURE 8. Adjustable parameters for SAN fine-tuning

rithms begin with the nominal parameter values assigned when the
sensors and actuators were first designed.

A simulated annealing run of 1000 trials was usually sufficient to
produce good results. The annealing schedule consisted of 65 eval-
uations at each annealing temperature, with the next ‘temperature’
being 0.75 times the previous one. In some cases SGA produced
better results than SA for the same number of evaluations. For
other cases the reverse was true. We expect that simulated anneal-
ing would find better solutions given many evaluations and a suit-
able annealing schedule, while stochastic gradient ascent quickly
finds a reasonable local maximum.

6.0  Results
SANs appear to be capable of serving as useful controllers for
almost any relatively simple creature. We have successfully experi-
mented with a total of 10 creatures. These creatures are listed in
Table 1, and some of their mechanical configurations are given in
the Appendix. The creatures are drawn in the vertical plane and
make use of the ground to propel themselves forward, with the
exception of the fish. The fish makes use of the reaction forces of
water to propel itself forward. The crawler consists of four point
masses placed in a rectangular configuration. These masses experi-
ence less friction sliding forward than backwards. The crawler uses
this property to be able to move forward.

 Most of the creature designs are the original and only attempts at
designing the creature. There remains, however, a certain measure
of intuition involved in determining what sensors and actuators
might be useful to the creature. The angle ranges of the sensors and
actuators for both the bounder and luxo were varied in several
experiments before settling on the given choices, which seem to be
capable of yielding a broad range of interesting gaits. The forces
and torques produced by the SAN controllers are usually not
smooth because of the presence of impacts and the use of binary
sensors.

An evaluation of 200 random controllers (phase 1) finds useful
controllers for each of the creatures, although a wider variety of
gaits can be obtained by evaluating more. We retain the top 10

TABLE 1. The experimental creatures

creature links sensors actuators
hidden
nodes

speed
cm/sec

crawler 4 8 2 10 11
fish 4 6 2 5 19
bounder 5 8 4 8 115
luxo 3 6 2 6 79
cart 2 6 1 5 23
walker 6 11 5 6 101
twolink 2 6 1 5 12
threelink 3 8 2 7 33
fourlink 4 11 3 8 55
star 3 8 2 7 9

for (1000 trials)
randomly choose a parameter to vary
perturb the parameter value by +delta or -delta
evaluate the new creature by simulation
if (creature improved) then

keep change
else

reject change

FIGURE 9. Pseudocode for stochastic gradient ascent



results automatically for examination by the user. For most crea-
tures we use the distance moved in 6 seconds as an evaluation
metric. A 30 second evaluation is used for the crawler and the fish
in order to be able to test their tracking ability. An evaluation of
200 controllers thus requires 1200 seconds of simulation for most
creatures. This can take from 1 hour for the cart creature to 6
hours for the walker creature (on a Sun SPARC IPC).

The crawler and the fish were designed to perform tracking. Their
purpose in life is to always swim or crawl towards the follow
point. They perceive this follow point only through their binary
eye sensors. The joint connecting link L4 to L3 in the fish has a
passive angular spring and damper. This joint and link L4 serve as
the caudal fin of the fish, a necessary feature for efficient swim-
ming. The crawler and the fish are creatures that form a dynami-
cal system with their SANs that is capable of tracking an object
successfully. They can do so with binary eyes and have never
been given any information on how to move forward, turn, or
associate eye information with turning. Figure 10 shows an exam-
ple of the pursuit motion of the fish.

6.1 Variety of Solutions
The most novel modes of locomotion were discovered for very
simple creatures, such as those having only two or three links.
The cart creature, shown in Figure 11, is perhaps the best exam-
ple. The creature derives its name from ‘cartwheel’ because it was
originally designed with the hope it could move by performing
cartwheels. Performing cartwheels is indeed one of the physi-
cally-feasible modes of locomotion discovered. The creature is
also capable of four other unique and valid gaits, however. All 5
modes are shown in Figure 12. These modes were found in a run
of 1000 controller evaluations. Several modes looked promising,
but were unable to fully sustain periodic locomotion initially.
These motions were easily fixed to yield proper periodic locomo-
tion using the fine-tuning phase as described in the previous sec-
tion.

A simple two-link chain is also capable of remarkable motions. It
is important to note that one of the links is heavier than the other,
which is necessary to avoid some situations where the chain  is
unable to locomote because of its symmetry. One SAN moves the
creature forward using a flapping motion that lifts the joint vertex
upwards and forwards in small hops. Another performs repeated
‘jumps’ onto its back. Yet another manages to get the links into a
position such that it can do a big aerial jump. It ‘falls’ upon land-
ing, but manages to get up to perform another jump, forming a
repetitive motion.

More complex figures such as the bounder and the walker pro-
duce gaits more familiar to us. The bounder has gaits moving in
small hops, big hops, shuffling, and others which are difficult to
describe succinctly. The walker moves by performing shuffles,
hops, and taking alternating steps. For many objects, the gaits

FIGURE 10. The fish chasing a point being
dragged along a spline curve.
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metres produced are dependent upon the coefficient of friction. This is par-
ticularly the case for the three-link and four-link chain creatures.

Many of the solutions not ranking among the best in terms of the
evaluation metric can also be interesting. Some creatures fall over
but can still succeed in moving forward while on their back. Others
move a bit and then become fixed, apart from a repeated twitching
motion of leg. This is also the case for creatures that fall over into a
state from which they cannot get up. These often repetitively
twitch their legs in a style reminiscent of an upside-down insect.

There are limits to the complexity of motion that can be expected
to emerge by evaluating randomly-generated controllers. It would
be futile, for example, to expect to use our method directly to find a
SAN to control a reasonable model of a human body in performing
a high-jump. As we will discuss shortly, however, we believe that
more complex controllers might be achievable through an evolu-
tionary approach.

6.2 Robustness of Solutions
SANs are also an interesting control structure because they can
provide robust control. Figure 13 shows a bounder moving over
rough terrain using a SAN that was chosen for its performance over
flat terrain. A measure of robustness could be included in the
search procedure of phase 1 by performing all the evaluations over
terrain of the desired roughness. We believe the robustness is a
property related to the inherent simplicity of SAN controllers.

The robustness has limits because the creatures as presently con-
structed have no means of detecting the upcoming terrain. As such,
they are functioning in a manner equivalent to a person walking

sensors:

mechanical configuration:

link mass (kg)

sensor type link min max

actuators:

act. min max ks kd5cm

A1,S5,S6

S1 S2

S3 S4

L1

L2

L1
L2

0.10
0.10

S1
S2
S3
S4
S5
S6

touch
touch
touch
touch
angle
angle

L1
L1
L2
L2
L2
L2

−180
  120

−120
  180

A1 −140 140 0.002 0.0001

FIGURE 11. The cart creature

FIGURE 12. Modes of locomotion for the cart

FIGURE 13. The bounder creature climbing a hill



over rough terrain in the dark. When moving over rough terrain,
the same mode of locomotion is usually maintained, with the vari-
ations in terrain causing the timing of events to be changed
slightly. The gaits are not as robust once they have been fine-
tuned. The situation is analogous to running blindly as opposed to
walking blindly. Motions optimized for speed are usually less sta-
ble.

6.3 Evolution
The second  phase of the network synthesis involves making
small changes to some parameters of the sensors, actuators, and
delays in the SAN. One could also consider including small
changes to the actual physical parameters of the system in order to
improve its motion. These parameters could include the link
lengths, masses, and points of attachment. Such changes are akin
to an artificial kind of evolution. For adherance to the constraints
of biological systems, the values of these parameters should be
interrelated. For example, a stronger spring constant in the actua-
tor, corresponding to a stronger ‘muscle’, should increase the
mass of the appropriate link. Similarly, a larger link should also
have an increased mass.

The evolutionary principle could also perhaps be applied to the
synthesis of controllers for more complex systems. It is unlikely
that random search will stumble upon the best mode of locomo-
tion for a complex articulated figure, such as a good model of a
horse. We feel that this is not a large shortcoming of our method
because nature herself does not directly arrive at suitable control-
lers for such creatures. The skeleton, musculature, and control for
a horse are the result of a long series of evolutionary changes. We
believe it might be possible to arrive at complex controllers by
first beginning with the control of simpler figures, such as those
that have fewer joints or that have more stable locomotion.

7.0 Conclusions
We have presented a new method that automatically searches for
interesting and physically-feasible modes of locomotion for arbi-
trarily-designed creatures. The solutions are in the form of simple
controllers that use binary sensors as input and produce actuator
forces and torques as output. Sensor-actuator networks are a com-
pact representation of the complex and varied gaits that they pro-
duce. A typical controller has 240 weights that can take on 5
values, and can thus be represented in 70 bytes.

There are several advantages to using SANs. Using the method
requires no knowledge of the underlying equations of motion.
The user can rapidly construct a new creature and have the
method ‘discover’ several ways it can locomote. It is easy to gen-
erate controllers that take advantage of more complex physical
phenomena. As an example, the coefficient of friction can have a
profound impact on the choice of the best gait. SANs can control
mechanical systems that do not always have smooth motion. The
user can influence the motion through the specification of the
evaluation metric and evaluation terrain in order to achieve the
desired speed, energy, height, and robustness of the control. The
ability to fine-tune the sensors, actuators, and delays in the SAN
means the creature designer need not choose the optimal design
parameters to begin with.

SANs have some disadvantages from the point of view of an ani-
mator. They do not at present provide the user with as much con-
trol over the resulting motion as keyframing or physics-as-
constraints methods. Furthermore, there is no guarantee that any
useful solution will be found. SANs in their current incarnation
do not work very well for systems dominated by linear or smooth
dynamics. The synthesis method also fails to find the best modes
of locomotion for complex creatures. Our method always results

in physically-realizable motions, something that can be an advan-
tage or a restriction in animation.

We believe there are many possible future directions for this work.
Many experiments can be carried out using other types of architec-
tures, sensors, and actuators. The fine-tuning  phase could be used
to determine how to insert passive elastic elements in the system to
reduce the amount of expended energy for a given mode of loco-
motion. The use of SANs as the bottom level of a control hierarchy
needs to be investigated. More understanding and analysis of the
dynamical systems formed by the SANs and the creatures is
needed.

Appendix

mechanical configuration:

link mass (kg)
L1
L2
L3

0.05
0.10
0.30

L1

L2

L3

A1,S3,S4
A2,S5,S6

S1 S2

sensors:
sensor type link min max
S1
S2
S3
S4
S5
S6

touch
touch
angle
angle
angle
angle

L1
L1
L2
L2
L3
L3

−180
−53
−100
  140

−70
  180
  75
  180

actuators:

act. min max ks kd
A1
A2

−70
  60

−50
  150

0.05
0.04

0.001
0.001

10cm

Luxo

The fish

mechanical configuration:

15cm
link mass (kg)
L1
L2
L3
L4

0.2
1.0
0.3
0.1

actuators:
act. min max ks kd
A1
A2

−20
−40

20
40

0.003
0.006

0.001
0.001

sensors:
sensor type link min max
S1
S2
S3
S4
S5
S6

eye
eye
eye
angle
angle
angle

L2
L2
L2
L3
L3
L3

  10
−10
−180
−180
−25
  25

  180
  10
−10
−25
  25
  180

L1

L2
L3

L4
A1

A2,S4,S5,S6

S1

S2

S3

mechanical configuration:

30cm

link mass (kg)
L1
L2
L3
L4
L5
L6

0.3
0.3
0.2
0.2
0.1
0.1

sensors:
sensor type link min max
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

touch
touch
touch
touch
angle
angle
angle
angle
angle
angle
angle

L5
L5
L6
L6
L2
L2
L2
L3
L3
L4
L4

−180
−15
  15
−180
−75
−180
−75

−15
−5
  180
−85
  180
−85
  180

actuators:
act. min max ks kd
A1
A2
A3
A4
A5

−30
−105
−105
  20
  20

  30
−70
−70
  30
  30

0.15
0.15
0.15
0.10
0.10

0.01
0.01
0.01
0.005
0.005

S1 S2

S3

S4

L1

L2

L3
L4

L5
L6

A1,S5,S6,S7

A2,S8,S9

A3,S10,S11

A4

A5

The walker
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FIGURE 14. Bounders on the run

FIGURE 15. Walking on campus


