
~ Computer Graphics, Volume 24, Number 4, August 1990

Reusable Motion Synthesis Using State-Space Controllers

Michiel van de Panne*, Eugene Fiume** and Zvonko Vranesic*

D e p a r t m e n t of*Elec t r ica l E n g i n e e r i n g / * * C o m p u t e r Science
Univers i ty o f T o r o n t o

Toron to , C a n a d a M5S 1A4

Abstract
The use of physically-based techniques for computer animation can
result in realistic object motion. The price paid for physically-based
motion synthesis lies in increased computation and information re-
quirements. We introduce a new approach to realistic motion spec-
ification based on state-space controllers. A user specifies a motion
by defining a goal in terms of a set of destination states. A state-
space controller is then constructed, which provides an optimal-
control solution that guides the object from an arbitrary starting con-
figuration to a goal. Motions are optimized with respect to time and
control energy. Because controllers are specified in terms of desti-
nation states only, it is easy to reuse the same controller to produce
different motions (from different starting states), or to create a com-
plex sequence of motions by concatenating several controllers. An
implementation of state-space controllers is presented, in which re-
alistic motions can be produced in real time. Several examples will
be considered.

CR Categories: 1.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism - animation; 1.6.3 [Simulation and Mod-
elling]: Applications; G. 1.6 [Constrained Optimization].

1 Introduct ion

Computer-assisted animation embodies a wide variety of
motion-synthesis techniques. Kinematic approaches still
predominate and are likely to do so, but physically-based
techniques are gaining in popularity, The cost of greater
physical realism has been increased computational cost and
information requirements. Moreover, it is not usually possi-
ble to reuse a previously-computed motion in other contexts.

The physical modelling of natural phenomena or motions re-
quires physical simulation. In such cases, one typically de-
fines some initial conditions and then invokes a physical sim-
ulation of the model. In a general animation system, some
notion of motion control is also required. In this case, a de-
sired goal is specified, and the system attempts to generate

°The financial assistance of the Natural Sciences and Engineering Re-
search Council of Canada, and of the Information Technology Research Cen-
tre of Ontario, is gratefully acknowledged.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

a suitable series of forces and torques on a moving object in
order to reach the goal f rom some initial configuration. The
control problem is difficult, and it is the focus of this paper.
We propose the use of encapsulated optimal control laws in
the form of state-space controllers. The same controller can
be used in many different situations, and it can be concate-
nated with other controllers to produce seamless composite
motions. The next section gives an overview of motion spec-
ification techniques. We then describe our approach, some
examples of its use, and future work.

2 Previous Work

2.1 Kinematic Motion Synthesis
Complex motion synthesis has traditionally been per-
formed kinematically using interpolation mechanisms such
as keyframing [9-11,18,21,23,27,33], Approaches to simpli-
fying the specification of key positions include inverse kine-
matic solutions [5,14,19], and procedural position specifica-
tion] 10,14,31,41]. Keyframes can also be obtained from real
moving objects with the use of rotoscoping. Techniques for
the kinematic specification of cyclic motions such as walking
or hopping have also been investigated [14,41].

2.2 Physically-Based Motion Synthesis
To satisfy the physical constraints of motion, animators
have turned to physical simulation [3,7,16,38]. Simulation
guarantees realistic, but not necessarily desirable, motion.
Achieving the desired motion is a difficult control problem.
Objects such as articulated figures (AFs) are controlled by
internal torques applied at the joints. The control problem is
to find the function of the torques over time that produces the
desired motion.

Several methods of generating the required torque functions
have been suggested. One method requires the user to spec-
ify torques directly [3,13,37,38]. It is in general difficult to
come up with the necessary torques to perform desired mo-
tions through a process of trial and error. One need only ob-
serve a backhoe operator to see that this is true. An alterna-
tive is to use inverse dynamics to solve for the torques re-
quired to produce a known acceleration [6,8,16,17]. This ap-
proach is useful when it is desired to have a portion of an ob-
ject follow a particular path, or to have an initial guess of the
torques needed to perform a motion. One can also obtain the

©1990 ACM-0-89791-344-2/90/008/0225 $00.75 225

SIGGRAPH '90, Dallas, August 6-10, 1990

required torques by using the desired joint positions as set-
points for closed-loop controllers [3,20]. This models robots
controlled by position-servos, permitting kinematic control
while still utilizing the equations of motion.

A solution to a specific inverse-dynamics problem can be
encapsulated in a dedicated controller or control procedure.
This method cleanly partitions the control from the dynamics
equations. Although the concept has often been suggested
in the literature, the construction of the required controller
or control procedure has always been left to the animator
or is constructed using a priori information, such as clinical
data [8,16,41]. Many controllers have been carefully hand-
engineered to solve specific problems. These include me-
chanical bipeds [26,28,35], human walking [8], six-legged
robots [24], snakes [25], and one-legged hopping robots [30].

Existing controllers have thus far been carefully tuned to
solve a specific problem. Consequently, they are not likely to
be flexible, reusable, or optimal with respect to time and en-
ergy constraints. The state-controllers proposed in this paper
seek to overcome these shortcomings.

2.3 Optimal Control Methods
Good solutions to the motion control problem have been
achieved by viewing it as a problem in optimization. A mo-
tion can be formulated as a two-point boundary problem with
the start and end points of the motion sequence being con-
straints in state space that must be met. An optimization func-
tion reflecting the control energy expended and time taken for
the motion [1,7,40] is then minimized to produce the optimal
solution (see Figure 1).

The method of space-time constraints by Witkin and Kass
uses a variant of sequential quadratic programming to solve
the optimization problem, and generates convincing motion
[40]. The user provides expressions for the total kinetic en-
ergy of the object and must express all other constraints in
a mathematical form. This is something that animators are
unlikely to be adept in doing. The solution is also costly to
compute. Brotman and Natravali [7] present a similar ap-
proach to solving the control problem, but make use of a dif-
ferent mathematical formulation. The same problems exist
as for the method of space-time constraints. Neither paper
suggests the possibility of saving a motion for future reuse.
A generalization of these approaches would be to define a
large set of optimal-control solutions in the form of a general
control law.

3 State-Space Control lers

3.1 Overview
We now introduce the main contribution of this paper. A
state-space controller (SSC) defines a set of control torques
that guides an object to a specified goal from a large do-
main of initial configurations, in a fashion that optimizes
time taken and energy expended. A goal is characterized
by a set of destination states, and depending on the nature
of this set, several classes of motion are possible. Simple
motions include those with a stationary destination state. A
non-stationary destination state will result in periodic mo-
tions such as hopping or walking. One can also define mo-
tions with goals consisting of many destination states. This
captures motions in which the terminal velocities or positions
of parts of the object are irrelevant. For example, in a race,
it is irrelevant which part of the body crosses the finish line
first. Lastly, "condit ional" motion can be defined: given
more than one destination state, perform the easiest motion.

While individual SSCs may define interesting motions in
themselves, the real power of the approach lies in the abil-
ity to concatenate SSCs to create a composite motion. SSCs
can also be concatenated with other motion-generation tech-
niques such as motor programs and key-framing, as we shall
see later. Consider the following example. Suppose Luxo
(the jumping lamp, Figure 2) is to hop forward several times,
take a long forward jump to miss a ditch, and then do a back-
flip out of elation of surviving. Given an appropriate set
of controllers, a user can build (and view) an animation se-
quence by writing a script consisting of the desired sequence
of controllers. Figure 3 depicts the interaction of controllers
with an animation system.

The concatenation of SSCs may be specified in two ways.
One way is to run each SSC to its conclusion or for a specified
duration. The terminal state of this SSC will then become the
starting state of the next SSC, as in the Luxo example above.
An alternative approach is to specify state-space breakpoints,
in which an SSC is associated with particular regions of state
space. An object may thus have a complex interleaving of
SSCs attached to it.

3.2 Motion through State-Space
The state of an object represents all the information required
to specify the position and velocity of every point on the ob-
ject. The state space of the object is the set of all possible
states that the object can assume. The state of a moving ob-

226

/___~_i_~state

solution
ate-space
raversal)

beginning state

state-space
for object

Figure 1: Optimal-control motion synthesis. Figure 2: The jumping lamp.

~ Computer Graphics, Volume 24, Number 4, August 1990

l double backflip I

[single backflip]
Luxo Controllers

L short hop t

I l°ng h°p I

~/ control
(forces, torques)

controller t simulator
I

state

~ graphics

pipeline

Figure 3: Using state-space controllers•

ject changes with respect to time. Consider a swinging pen-
dulum, a simple articulated object (Figure 4). The state of
a freely-swinging pendulum continuously changes with time
under the force of gravity• Its angular velocity plotted with
respect to time is a near-sinusoid, and likewise for the pen-
dulum angle. When these two functions are combined to ob-
tain the state, the resulting path through the state-space of the
pendulum is the almost circular path shown in Figure 5. By
exerting control torques, it is possible to influence the state-
space trajectory taken by an articulated object. We can use
this technique to guide an object toward a goal. This is the
central principle underlying state-space controllers,

g = l . 0 m / ~

m : 1.0 kg / \
I = 0 3 3 3 k g m 2 / \

• / m , l

fixed point ~g

o o t,oo \

Figure 4: The pendulum has mass m, length l, moment of
inertia I, angular velocity w; 0 is the CCW angle from the
positive x-axis, and 9 is the force of gravity.

3.3 Specification and Concatenation
The motion to be executed by a controller is expressed in
terms of a set of destination states for the object. The state
transitions from an arbitrary start state to a destination state
are optimized with respect to the time and energy taken to
perform the motion, and can only use the internal torques
that fall within the range of torques capable of being ex-
erted by the object. The controller thus functions as a con-
trol law, which defines the optimal-control solutions to a one

4 0 0 -

2 0 0 -

Angular velocity 0 -
(deg/s)

-200 -

- 4 0 0 -

-180

@
I I I

-90 0 90

Angle (degrees)

180

Figure 5: Pendulum swing as represented in state space.

state 1

/
state 2

Figure 6: A one boundary-point state-space controller.

boundary-point problem (the destination state), as shown in
Figure 6. In this case, point D represents a destination state in
a two-dimensional state-space. The arrows show some pos-
sible state-space paths that will be followed by the object for
various initial states.

A controller is defined over a user-specified, bounded region
of state-space called its domain. Figure 7 shows the regions
of state space over which controllers A, B, and C are defined,
as well as three respective destination states, Da, D#, and De.
Let So represent the initial state of the object. Suppose that
while controller A guides the object toward Do, it is desired
to invoke controller B. Similarly, assume that it is next de-
sired to change to controller C. The solid line in Figure 7 in-
dicates one such set of changes, where Si and $2 are the states
at which the new controllers are invoked. The only con-
straints on $1 and $2 are that Sl C Domain(A) M Domain(B)
and $2 E Domain(B) fq Domain(C). Clearly, concatenation
of controllers need not occur only at destination states.

3.4 Structure of Controllers
A controller is defined in a local co-ordinate system, and de-
fines relative motions. Formally, a controller denotes a vector
function f : S ~ T , where ,S is a state space and 7- is a set of
torque tuples. It is entirely possible to define procedural con-
trollers based on motor programs or kinematic interpolation
(see below). We shall focus our discussion on the automatic
generation of controllers that solve one-point optimal-control
problems•

In our current scheme, a continuous state-controller f is syn-
thesized from a discrete table of torques in state space. An n-

227

t state space
~ ' I I D , ' -

SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 7: Valid domains for exchanging controllers.

dimensional volume forming the controller's domain is regu-
larly subdivided into small n-dimensional cubes. Here n rep-
resents the number of dimensions of the object's state space,
or alternatively how many numbers are required to specify
the object's state. Table elements correspond to the comers of
the small hypercubes. The torques provided by the tables are
made continuous through n-linear interpolation in all dimen-
sions of the object's state space (e.g., bilinear interpolation
in two dimensions). Hierarchical or non-uniform sampling is
advisable, and is planned. We expect to use better-quality re-
construction filters when we move to non-uniform sampling.

3.5 The Generation of Controllers
It is infeasible (and inefficient) to solve a one-point optimiza-
tion problem by solving many instances of two-point prob-
lems. We instead employ a divide-and-conquer technique
called dynamic programming. The principle of dynamic pro-
gramming is illustrated in Figure 8. Suppose path AC is opti-
mal. Then the optimal path from any state P on AC to state C
is given by the subpath PC of AC. If a better alternative path
had existed (as shown by the dashed line), the optimal path
from A to C would contain this subpath. This property is
true of any monotonically-increasing optimization function
of object motion, such as time or expended energy.

A

Figure 8: The principle of dynamic programming.

Figure 9 illustrates how dynamic programming can be ap-
plied to the generation of state-space controllers. Suppose
optimal solutions are known for states located in region 1,
which contains destination state D. To calculate the optimal
solutions for states located in region 2, we solve a local op-
timization problem to get from the current state to the edge
of region 1. This provides a composite optimal solution for
both regions. Clearly, then, an appropriate strategy for con-
troller generation is to work backward from D, radiating the
solutions outward.

228

o D

Figure 9: Dynamic programming applied to an SSC.

A more detailed picture of the local optimization problem to
be solved is shown in Figure 10. ON and w~ are the angular
position and angular velocity of a link of an articulated fig-
ure. The quantization intervals of the table entries are given
by ql and q2. The figure shows the possible state-space tra-
jectories as projected onto the g~w~ plane of state space. The
trajectory taken from state S depends on the angular acceler-
ation c~n, which in turn depends on the control value (torque
vector) contained in the table element corresponding to point
S. The local optimization problem is to find the control value
at S that minimizes the optimization function.

O

q2

J

q2

(0,0)

ql -I I q l >

A B

O~n > > 0

E

°tn = 0 NN~ k

D *

O~n < < 0

C

Figure 10: The effect of various torques applied at S.

The optimization function we use is given by two terms:

tPsD
/op,(PsD) = tPSD + KT(t) at. (1)

dO

The first term represents the time taken to perform the mo-
tion, while the second term measures the energy expended
[1,40]. PSD represents a path through state space from an
initial state S to a destination D, and tpsD represents the time
taken to traverse this path. K is a user-defined vector of con-
stants that specifies the time/energy tradeoff, and T(t) rep-
resents the applied torques (control values). A small value
of K will minimize the time taken to perform the motion. A
large value minimizes the energy used to perform the motion.
Typical values for K depend on the magnitude of the forces
and torques capable of being exerted by the object. For our

~ Computer Graphics, Volume 24, Number 4, August 1990
III

pendulum example, a value of K = 1 implies we are willing
to exchange one second of time taken in reaching the desti-
nation state for the "energy" expended to exert a torque of
1 Newton-metre for one second. Our "energy" term is more
properly a measure of the effort required to perform a motion.
Other objective functions are possible.

It is required to find the torque vector at S that produces
a state-space path PSD such that fopt(PsD) is minimized.
The solution we currently employ consists of calculating
fo,t (PsD) from a set of samples of torque vectors and then
choosing the vector that results in the minimal value of the
optimization function. The samples are chosen by uniformly
sampling the space of torque vectors (since this space is
bounded). This is admittedly a slow, brute-force approach
whose sole virtue is that it works. For each sample torque
vector, the state-space trajectory is calculated by simulating
the motion of the object. The trajectory is followed until the
object enters a region of state space in which the value of the
optimization function is already known. For the path PSD
this is indicated as point E in Figure 10.

Once the exit state is known, the value of the optimization
function can be determined from the equation

tPsE
fopt(PSD) = tPs E --[- KT(t) dt + fopt(PED). (2)

J0

For the local optimization problem, the values of the opti-
mization function are assumed to be known at neighbouring
points (points A, B, C, and F in Figure 10) and are linearly
interpolated between the points. The first two terms in Eq. 2
are simply fopt(PsE) (Eq. 1), while the last term represents
the value interpolated between the values of the optimization
function at B and C. Several iterations of controller compu-
tation are required, because the values of the optimization
function at neighbouring points may be unknown for the first
iteration. In Figure 10, this means that the computation of a
control value for state S is only accurate if the values of the
optimization function are accurately known at points A, B,
C, and F. It is difficult to sequence local optimizations such
that each local optimization always uses accurate informa-
tion. It is simpler to approximate this order and repeat this
for several iterations. For each iteration, the value of the op-
timization function will decrease. When the maximum such
change is less than a user-specified value, the solution is as-
sumed to be complete. An upper limit can also be placed on
the number of iterations to use. Technically, this approach
only yields a local minimum, but the local minimum found
has always been satisfactory.

3.6 The Size of State Space
While generating controllers for objects with few degrees of
freedom is feasible, in our current implementation the num-
ber of state-space dimensions becomes a problem for more
complex articulated figures. Both the time-complexity of the
algorithm and the size of the state-space control table are ex-
ponentially dependent on the number of state-space dimen-
sions. The size of the table is given by a, n~ , where ds is the
number of state-space dimensions (typically twice the num-
ber of degrees of freedom since each degree of freedom has
a position and velocity), and ns is the number of samples

per state-space dimension. The time-complexity of the al-
gorithm is given by O(ns a~ at n t), where dt is the number of
torques or forces to be applied, and nt is the number of sam-
ples per torque or force. The problem arises because state
space is defined as a large bounding hypercube that is uni-
formly sampled. There are two main aspects to the prob-
lem. First, the bounding hypercube is almost always far too
large. A user should be allowed to eliminate irrelevant ar-
eas of state space. Second, uniform sampling is far from
optimal. The sampling rate close to the destination should
be high, but the rate should fall off dramatically with "dis-
tance" from the destination. Sampling artifacts do not seem
to affect the stability of the controller significantly. If the in-
terpolation of control values between table entries causes the
object to drift from the optimal path to the destination state,
the controller corrects itself because the control values being
applied are always computed based on the current state. This
allows the controller to function properly, even if the object's
state changes suddenly as a result of a collision involving the
object. There is a considerable amount of interesting research
to be performed in studying the placement and frequency of
control-table values in state space.

4 Dynamics Formulation
To embed state-space controllers effectively in our anima-
tion system (see below) it is necessary to perform physical
simulations quickly. To date, we have focused our formu-
lation on the planar forward dynamics of articulated figures
(AFs). The extension to fully three-dimensional articulation
is straightforward. (It involves adding a Coriolis-force term
and changing moments of inertia from scalars to tensors so
that the moment of inertia for a link becomes dependent on
the current axis of rotation.) We assume that AFs have joints
and links that can be represented as a tree, with one link serv-
ing as the root link. A link can have any number of child
links, which are connected by a rotating joint.

The recursive Newtonian dynamics formulation we use is
well known [4], and is based on two fundamental equations
that balance the forces and moments exerted on each link.
Ultimately, we solve for the linear acceleration of the root
link and the angular acceleration for all the links with respect
to the root link. The accelerations are then numerically inte-
grated with an adaptive time step to determine the new ve-
locity and position of the links. What is important about our
approach is that, unlike most previous implementations of
dynamics formulations, the equations of motion are formed
symbolically, directly from the basic masses, forces, and in-
ertial properties of the object. This is very useful representa-
tion. We have written a dynamics compiler which can com-
pile a brief physical description of the AF into the desired
equations of motion. The equations generated are of the form
Ax = b where A and b are dependent on the physical proper-
ties and configuration of the links, and x represents the vector
of unknown accelerations. The output of the dynamics com-
piler gives the symbolic value of each of the elements of the
matrix A and the vector b. In the implementation the values
of A and b are output as lines of 'C ' code so that the equa-
tions of motion can be compiled and placed in a library. This
makes our system more portable, and it allows us to separate
the equations of motion from the remainder of the system.

229

SIGGRAPH '90, Dallas, August 6-10, ~1990

Special-purpose motions could also be compiled and placed
into this library. A symbolic representation of the equations
of motion also allows a programmer or a compiler to simplify
the expressions to be computed.

For objects containing about 12 joints or fewer [36], the equa-
tions of motion are best solved using LU-decomposition with
back-substitution [29] once the values of A and b are calcu-
lated. This solution has a complexity of O(n 3) for an AF
with n links. O(n) methods do exist, but in practice they are
only useful for AFs with many degrees of freedom [2,12].

Almost all interesting animations of objects involve colli-
sions with the environment and have other constraints on the
motion of the object, such as joint limits and friction. We use
springs and dampers to implement collisions and joint limits
[13,16,39].

We have developed an animation system that incorporates the
above dynamics formulation, and in which controllers can
be generated offline and subsequently scripted for use in re-
altime animation. Figure 11 depicts our animation system,
called Mosys.

files ~ . ~

I prOgrams ~ /

~ f I~IM: I I ANIst
] eontroller ~ state space ~ interface and ~ anima
~ d ~ _ ~ / I simulat°r I I se~v .

I ~ompiled in
~ ~ _ ~ o m p i l e d in

I ~?=~a~/~ I DYNCOMP: [
k~ ~ f ~ dynamics [

i i

i

! object
.

,v: I on
r

Figure 11: Mosys implementation.

5 E x a m p l e s

We now consider several examples of the generation of state-
space controllers using Mosys. The generation of controllers
is entirely separate from their use, and are usually computed
offiine. Once computed, they allow realtime animation of the
objects for which they were constructed.

5.1 Periodic Motions
A periodic motion, such as a link swinging or Luxo-lamp
hopping corresponds to a cycle in the object's state-space. A
controller that produces a periodic motion is created by spec-
ifying a destination state with non-zero velocities. As the
controller guides the object along the state-space cycle, the
object performs a periodic motion corresponding to the states

passed through along the way. One of the many possible pe-
riodic, swinging motions of a frictionless, free-swinging pen-
dulum is shown by the state-space cycle in Figure 5.

Motions such as walking or repeated hopping can be pro-
duced by making the object follow a cyclic path through state
space. In this case the state representing the horizontal dis-
tance denotes the distance to complete one cycle. The value
of this state increases until the object lands, at which point
the state wraps back to the starting position. This allows a
repeated motion to be described in terms of a state-space cy-
cle, which can be modelled by a state-space controller. This
idea was motivated by the fact that the spinal cord of animals
can produce a periodic sequence of control signals resulting
in periodic walking motions [15,32].

5.2 Pendulum
The pendulum has only one degree of freedom and therefore
has a two-dimensional state space consisting of the angle and
the angular speed (see Figure 4). The link is free to rotate in
both directions (without friction) and has the force of gravity
acting on it. The pendulum also has a motor or muscle lo-
cated at the point of rotation that can exert a control torque
on the pendulum. It is easy to represent the state-space path
of a pendulum using a plot, which helps to illustrate how gen-
eral SSCs guide objects to a destination.

SSCs with various destinations have been generated to con-
trol the motion of a pendulum. Figure 12 describes an SSC
with a destination state of 0 = 0 deg, ~ = 0 deg/s. Ap-
plied torques are constrained to the range - 10 to 10 Nm, and
pendulums cannot rotate at absolute angular speeds of more
than 500 degrees per second. The state-space dimensions of
0 and ~ are divided into 36 and 21 discrete intervals respec-
tively, yielding SSCs with a total of 756 entries. Figure 13
summarizes the pendulum SSCs that were generated.

controller for a single link
controller description commands:
ssd <name> <min> <max> <steps>
torq <name> <tmin> <tmax> <tsteps> <Ktorq>
dest <state>

dyn linkl # dynamics equations

ssd omega -500.0 500.0 21
ssd angle -180 170 36
wrap angle
torq torque -10.0 I0.0 ii
dest angle=O omega=O

0.1

Figure 12: Specification for pendulum SSCs

name destination state generation
0 (deg) w (deg/s) time (s)

A 0 0 381
B 120 0 452
C -120 0 341
D 0 300 460
E -120 -300 459
F 160 250 454

Figure 13: Six pendulum controllers. Controllers
puted on a Sun 3/60 workstation.

were corn-

230

~ Computer Graphics, Volume 24, Number 4, August 1990

Figures 14 and 16 depict some state-space plots of pendulum
motion under control of the SSCs. The scales used for the
state-space plots in are as in Figure 5. The curve connect-
ing each starting state and the destination state represents the
state-space path'that the pendulum takes when guided by the
SSC. The right and left boundaries of the state-space plots
are connected, giving each plot a cylindrical topology.

Controller A

. - - m

Controller E

Controller B

Controller F

Figure 14: State-space trajectories followed using various
SSCs (C and D omitted). The destination state is given by an
encircled X, while some sample start states are given by the
small squares.

Controllers D, E, and F define periodic motions because their
destination states specify non-zero angular velocities (see
above). As seen in Figure 14, these controllers eventually
drive the pendulum toward their respective state-space cy-
cles, from all initial states. The state-space cycles are indi-
cated in the figure with a thick line.

The six different SSCs form a library of motion commands
for the pendulum. Figure 15 shows an animation script used
to 'animate' the pendulum, assuming that one would want to
endow a pendulum with a 'muscle' that can exert a torque at
the joint. Figure 16 depicts the resulting motion.

The animation begins with controller B being used to drive
the pendulum to the destination state for controller B. The
point ' sB' in Figure 16 shows the point at which controller B
is invoked, and point 'dB' denotes the destination state for
controller B. After 0.4 seconds of proceeding toward dB, con-
troller A is invoked for 0.7 seconds. Before it reaches dA (the
destination state for controller A), controller D is invoked for
0.6 seconds. The remainder of the animation script consists
of similar exchanges of controllers.

While the state of the pendulum is continuous over time,
torques (and hence accelerations) are discontinuous at the
point of controller exchange. Such discontinuities might de-
tract from the realism of the resulting motion because real
actuators (muscles or motors) cannot instantaneously change
their applied torque or force. A simple solution to this prob-
lem is to apply a slew limitation to the control values. This
would limit the absolute rate of change of the control value,

state link -135,350
swapcon link conB.ctab
slm 0.4
swapcon
smm 0.7
swapcon
slm 0.6
swapcon
sam 0.4
swapcon
sam 0.4
swapcon
sxm 0.7

starting state
invoke controller B
simulate 0.4 seconds

link conA.ctab # invoke controller A
simulate 0.7 seconds

link conD.ctab # invoke controller D
simulate 0.6 seconds

link conE.ctab # invoke controller E
simulate 0.4 seconds

link conC.ctab # invoke controller C
simulate 0.4 seconds

link conF.ctab # invoke controller F
simulate 0.7 seconds

Figure 15: A pendulum animation script.

D

dA adB

Figure 16: State-space trajectory of pendulum.

resulting in C (2) continuous motion.

6 The Self-Parking Car
We now consider the design of an SSC that is to parallel-park
a car on the street as shown in Figure 17. The car has five
state-space dimensions shown in Figure 18. The destination
state for the ear is given by the dotted line in Figure 17, with
the car being at rest. The domain of the controller is marked
with a dashed line. The reference point of the car, located be-
tween the front wheels, must remain within this region. The
animator can place the car anywhere within the domain of the
SSC and have it park in a fashion similar to people(!). The
walls in Figure 17 are additional obstacles to be avoided.

The car has two control variables: ~vst, the rate at which the
steering wheel turns, and ct~, the angular acceleration or de-
celeration of the front wheels of the car.

y (metres)

5

curb//~

I

i•_•controller domain
..... i]

_ t _ _

'.~.~,'.."~~ walls

~ ~ iestination state >

1'0 x (metres)

Figure 17: The street (non-contact parking only).

231

Q SIGGRAPH '90, Dallas, August 6-10, I 990
i l l l l l

Ycar

\
Yworld \

\ ~i//~ \ car re~ereliiCe
\ / p o i n t

\ /
Yc

/ j / ~ . I f \ I

/ ~ f \ I

~ e e n t r e o f
/ r o t a t i o n

Xcar Xworld

Figure 18: State-space dimensions for a car.

The final SSC for the car has 13250 states. All table en-
tries that correspond to collision states are removed while
the state-space is being generated; thus the SSC algorithm
knows these states are out of the controller domain. Some
results of the car SSC in operation are shown in a sequence
of frames in Figure 19. The position of the car is shown every
0.3 seconds. The parked cars on the right are used to provide
a reference showing the destination state for the car. In all six
cases shown, the car is placed in the initial state at rest, but
the wheels are oriented differently. The car SSC is then in-
voked to park the car. The bottom-left and top-right cars are
especially interesting. In these cases the cars back up past the
desired destination and then drive forward to straighten the
wheels.

7 Luxo

In our next example, Luxo will perform a sequence of in-
teresting motions, such as jumps and flips. Because we use
uniform sampling of the state space to generate a continuous
controller, two practical problems arise in trying to create a
jump or flip controller for Luxo. The first is the size of the
state space. As illustrated in Figure 20, Luxo has 5 degrees of
freedom when in the air, and thus has a 10-dimensional state
space. The second is that many of the most important states
during a jump occur during takeoff and landing, when only
one edge of the lamp's base is in contact with the ground.
Since the state space is sampled uniformly without paying
special attention to interactions with the environment (like
the floor), collisions may not be properly sampled. The prob-
lem is illustrated in Figure 21, which shows the states of suc-
cessive table entries. The second state has its base protruding
through the floor, and would therefore be discarded from the
SSC table (removing it from the controller's domain). The
state that is really of interest is the third one, with the left side
of the base touching the ground. Both of the above problems
serve to show that our choice of uniform sampling is some-

232

Figure 19: Animation usmg the car-parking SSC.

I
I

what crude. Fortunately, the remedy for the case of Luxo is
not difficult.

03

02 Y

Figure 20: Degrees of freedom for a jumping lamp.

0 = 1 0 ° 0 = 2 0 o 0 = 13.9 °

Figure 21: The collision sampling problem.

The problem of state-space size can be solved by breaking
up canonical Luxo motions into two pieces: airborne motion,
and motion on the ground (i.e., takeoff/landing motion). It is
easy to write motor programs (i.e., procedural functions of
torques over time) to make Luxo perform a flip or jump. It is
very much more difficult to do a correct landing. We thus use
motor programs for the airborne motions, and a controller to
guide Luxo to a safe landing and to prepare it for the next mo-
tion. All airborne motions begin from a distinguished starting
state, which coincides with the destination state of the "land-
ing" controller. Thus motions based on motor programs can
be easily concatenated with motions based on SSCs. The
" landing" controller only has to deal with 2 degrees of free-
dom, or a four-dimensional state space, which is quite feasi-
ble.

~ Computer Graphics, Volume 24, Number 4, August 1990

The dynamics compiler was used to generate the equations
of motion for Luxo. Some code was added to the resulting
dynamics procedure in order to model collisions with the en-
vironment, consisting of the floor and a set of stairs. Four mo-
tions were created for the Luxo animation: a forward jump, a
single back flip, a double backflip, and a single backflip down
a step. Once controllers and motor programs for the individ-
ual motions have been generated, scripting various anima-
tions is a simple exercise. Figure 22 is a sample back-flip
from the animation. See also the photographs at the end of
this paper.

Figure 22: A Luxo back-flip

A brief comparison with previous animations of Luxo is
informative. The Luxo Jr. video [22] by Pixar was pro-
duced entirely using keyframing. The motion was synthe-
sized manually and succeeds in looking realistic because of
the formidable artistic talent of the animators. The reper-
toire of motions that Luxo performs in the video is not large
or complex; most motions are performed with the base on
the ground. Witkin and Kass obtain a jumping motion for
Luxo by formulating it as a two-boundary-point optimization
problem [40]. The results produced are impressive, but their
formulation appears to have a problem with the takeoff and
landing occurring with only one edge of the base in contact
with the ground. Their Luxo jump sequence has a takeoff
and landing with a flat base. From our experience with the
torques necessary to make Luxo perform a jump, we are con-
vinced that a jump with a flat base on takeoff and landing is
very difficult to perform and would therefore not be a natural
mode of locomotion for a lamp!

8 Conclusions
We have introduced a new approach to reusable motion syn-
thesis based on state-space controllers. The controllers pro-
duced are unique in that they are used to control the simula-
tion of the object with no a priori knowledge of the object
or how it should move, apart from a destination goal. The
forward dynamics of articulated figures is automatically gen-
erated from a basic physical description of the object.

While the use of controllers in physically-based motion syn-
thesis is very encouraging, there are several aspects that re-
quire more thought. First, we wish to carefully compare con-
troller response to the actual optimal solution. This may al-
low us to develop error-control mechanisms for controller
generation. Second, we would like to create hierarchical or
distributed controller structures, in which more "abstract"
controllers actually manage lower-level controllers in re-
sponse to events in the system. Third, a controller is cur-

rently quite dependent on the specific physical parameters of
an object. To what extent can controllers themselves be pa-
rameterized by, for example, interpolating between similar
controllers? Fourth, faster controller-generation techniques
are required. Fifth, better controller sampling and reconstruc-
tion techniques are needed. Sixth, we wish to develop a better
user interface for scripting controllers into significant anima-
tions.

References

[1] R. Alexander. The gaits of bipedal and quadrupedal animals.
Int. Journal of Robotics Research, Summer 1984.

[2] W.W. Armstrong. Recursive solution to the equations of mo-
tion of an n-link manipulator. Proc. 5th World Congress The-
ory Mach. Mechanisms, volume 2, 1343-1346, 1979.

[3] W.W. Armstrong, M. Green, and R. Lake. Near-real-time con-
trol of human figure models. IEEE Computer Graphics and
Applications, 7(6):52-61, June 1987.

[4] H. Asada and J.-J.E. Slotine. Robot Analysis and Control. John
Wiley and Sons, 1986.

[5] N.I. Badler, K.H. Manoocherhri, and G. Waiters. Articulated
figure positioning by multiple constraints. IEEE Computer
Graphics and Applications, 7(6):28-38, June 1987.

[6] R, Barzel and A.H. Barr. A modeling system based on dy-
namic constraints. Proc. of S1GGRAPH" 88 (Aug. 1988). ACM
Computer Graphics 22,4, 179-188.

[7] L.S. Brotman and A.N. Netravali. Motion interpolation by
optimal control. Proc. of SIGGRAPH'88 (Aug. 1988). ACM
Computer Graphics 22,4,309-3 l 5.

[8] A. Bruderlin. Goal-directed, dynamic animation of bipedal
locomotion. Technical report, Simon Fraser University, 1988.

[9] N. Burtnyk and M. Wein. Computer generated keyframe ani-
mation. Journal of the Society of Motion Picture and Televi-
sion Engineers, 80(3):149-53, March 1971.

[10] T. Calvert, J. Chapman, and A. Patla. Aspects of the kinematic
simulation of human movement. IEEE Computer Graphics
and Applications, 41-50, Nov. 1982.

[11] C. Csuri. Real time film animation. IEEE Convention Digest,
42-3, March 1971.

[12] R. Featherstone. The calculation of robot dynamics using ar-
ticulated body inertias, Int. Journal of Robotics Research,
2(1): 13-30, Spring 1983.

[13] D.R. Forsey and J. Wilhelms. Techniques for interactive ma-
nipulation of articulated bodies using dynamic analysis. Proc.
of Graphics Interface, 8-15, 1988.

[14] M. Girard. Interactive design of computer-animated legged
animal motion. IEEE Computer Graphics and Applications,
7(6):39-51, June 1987.

[15] S. Grillner. Locomotion in vertebrates: Central mechanisms
and reflex interaction. Physiological Reviews, 55:247-304,
1975.

[16] Paul M, lsaacs and Michael E Cohen. Controlling dynamic
simulation with kinematic constraints, behaviour functions
and inverse dynamics. Proc. of SIGGRAPH '87. ACM Com-
puter Graphics 21,4,215-224.

[17] P.M. Isaacs and M.F. Cohen. Mixed methods for complex
kinematic constraints in dynamic figure animation. The Visual
Computer, 4:296-305, 1988.

[18] D.H. Kochanek and R.H. Barteis. Interpolating splines for
keyframe animation. Graphics Interface, 41--42, 1984.

233

O SIGGRAPH '90, Dallas, August 6-10, 1990

[19] J. U. Korein and N. I. Badler. Techniques for generating the
goal-directed motion of articulated structures. 1EEE Computer
Graphics and Applications, 71-81, Nov. 1982.

[20] B.C. Kuo. Automatic Control Systems. Prentice-Hall, Inc.,
1987.

[21] J. Lasseter. Principles of traditional animation applied to 3-
d computer animation. Proc. of S1GGRAPH'87 (July 1987).
ACM Computer Graphics 21,4., 35---44.

[22] J. Lasseter and W. Reeves. Luxo jr. Pixar Video, 1986.

[23] N. Magnenat-Thalmann and D. Thalmann. Computer Anima-
tion: Theory and Practice. Springer-Verlag, 1985.

[24] R. B. McGhee and G. I. Iswandhi. Adaptive locomotion of a
multilegged robot over rough terrain. IEEE Transactions on
System, Man, and Cybernetics, 176.- 182, April 1979.

[25] G.S.P. Miller. The motion dynamics of snakes and worms.
Proc. of SIGGRAPH'88 (Aug. 1988). ACM Computer Graph-
ics 22,4, 169-178.

[26] H. Miura and I. Shimoyama. Dynamic walk of a biped. Int.
Journal of Robotics Research, 60---74, Summer 1984.

[27] T. J. O'Donnel and Arthur J. Olsen. Gramps - a graphical
interpreter for real-time interactive three-dimensional picture
editing and animation. 1981.

[28] K. Ogo, A. Ganse, and I. Kato. Quasi dynamic walking of
biped walking machine aiming at completion of steady walk-
ing. Third Symposium on Theory and Practice of Robots and
Manipulators, 340-356, Sept. 1978.

[29] W.H. Press, B.P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes. Cambridge University Press,
1986.

[30] M.H. Raibert. Legged robots that balance. Artificial lnteJli-
gence series. MIT Press, Cambridge MA, 1985.

[31] C. Reynolds. Computer animation with scripts and actors.
Proc. of SIGGRAPH'81., 1981.

[32] M.L. Shik and G. N. Orlovskii. Neurophysiology of a loco-
motor automatism. PhysiologicalReviews, 56:465-501, 1976.

[33] S. Steketee and N.I. Badter. Parametric keyframe interpolation
incorporating kinetic adjustment and phrasing control. Proc.
of SIGGRAPH'85 (July 1985). ACM Computer Graphics 19,3.

[34] D. Sturman. Interactive keyframe animation of 3-d articulated
models. Graphics Interface, 35-40, 1984.

[35] M. Townsend and A. Seirig. Effect of model complexity and
gait criteria on the synthesis of bipedal locomotion. IEEE
Transactions on Biomedical Engineering, 433---444, Novem-
ber 1973.

[36] M. W. Walker and D. E. Orin. Efficient dynamic computer
simulation of robotic mechanisms. Journal of Dynamic Sys-
tems, Measurement, and Control, 205-211, Sept. 1982.

[37] J. Wilhelms. Virya: A motion control editor for kinematic and
dynamic animation. Proc. Graphics Interface 86, 141-146.
Morgan Kaufman, May 1986.

[38] J. Wilhelms, M. Moore, and R. Skinner. Dynamic animation:
interaction and control. The Visual Computer, 4(6):283-295,
1988.

[39] J. Withelms. Using dynamic analysis for realistic animation
of articulated bodies. 1EEE Computer Graphics and Applica-
tions, 7(6): 12-27, June 1987.

[40] A. Witkin and M. Kass. Spacetime constraints. Proc. of SIG-
GRAPH'88 (Aug. 1988). ACM Computer Graphics 22,4, 159-
168, 1988.

[41] D. Zeltzer. Motor control techniques for figure animation.
IEEE Computer Graphics and Applications, 53-60, Nov.
1982.

234

