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Abstract 
The use of physically-based techniques for computer animation can 
result in realistic object motion. The price paid for physically-based 
motion synthesis lies in increased computation and information re- 
quirements. We introduce a new approach to realistic motion spec- 
ification based on state-space controllers. A user specifies a motion 
by defining a goal in terms of a set of destination states. A state- 
space controller is then constructed, which provides an optimal- 
control solution that guides the object from an arbitrary starting con- 
figuration to a goal. Motions are optimized with respect to time and 
control energy. Because controllers are specified in terms of desti- 
nation states only, it is easy to reuse the same controller to produce 
different motions (from different starting states), or to create a com- 
plex sequence of motions by concatenating several controllers. An 
implementation of state-space controllers is presented, in which re- 
alistic motions can be produced in real time. Several examples will 
be considered. 

CR Categories: 1.3.7 [Computer Graphics]: Three Dimensional 
Graphics and Realism - animation; 1.6.3 [Simulation and Mod- 
elling]: Applications; G. 1.6 [Constrained Optimization]. 

1 Introduct ion 

Computer-assisted animation embodies a wide variety of  
motion-synthesis techniques. Kinematic approaches still 
predominate and are likely to do so, but physically-based 
techniques are gaining in popularity, The cost of  greater 
physical realism has been increased computational cost and 
information requirements. Moreover, it is not usually possi- 
ble to reuse a previously-computed motion in other contexts. 

The physical modelling of  natural phenomena or motions re- 
quires physical simulation. In such cases, one typically de- 
fines some initial conditions and then invokes a physical sim- 
ulation of the model. In a general animation system, some 
notion of motion control is also required. In this case, a de- 
sired goal is specified, and the system attempts to generate 

°The financial assistance of  the Natural Sciences and Engineering Re- 
search Council of  Canada, and of  the Information Technology Research Cen- 
tre of  Ontario, is gratefully acknowledged. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

a suitable series of  forces and torques on a moving object in 
order to reach the goal f rom some initial configuration. The 
control problem is difficult, and it is the focus of  this paper. 
We propose the use of  encapsulated optimal control laws in 
the form of state-space controllers. The same controller can 
be used in many different situations, and it can be concate- 
nated with other controllers to produce seamless composite 
motions. The next section gives an overview of motion spec- 
ification techniques. We then describe our approach, some 
examples of  its use, and future work. 

2 Previous Work 

2.1 Kinematic Motion Synthesis 
Complex motion synthesis has traditionally been per- 
formed kinematically using interpolation mechanisms such 
as keyframing [9-11,18,21,23,27,33], Approaches to simpli- 
fying the specification of key positions include inverse kine- 
matic solutions [5,14,19], and procedural position specifica- 
tion ] 10,14,31,41 ]. Keyframes can also be obtained from real 
moving objects with the use of  rotoscoping. Techniques for 
the kinematic specification of cyclic motions such as walking 
or hopping have also been investigated [14,41]. 

2.2 Physically-Based Motion Synthesis 
To satisfy the physical constraints of  motion, animators 
have turned to physical simulation [3,7,16,38]. Simulation 
guarantees realistic, but not necessarily desirable, motion. 
Achieving the desired motion is a difficult control problem. 
Objects such as articulated figures (AFs) are controlled by 
internal torques applied at the joints. The control problem is 
to find the function of the torques over time that produces the 
desired motion. 

Several methods of generating the required torque functions 
have been suggested. One method requires the user to spec- 
ify torques directly [3,13,37,38]. It is in general difficult to 
come up with the necessary torques to perform desired mo- 
tions through a process of  trial and error. One need only ob- 
serve a backhoe operator to see that this is true. An alterna- 
tive is to use inverse dynamics to solve for the torques re- 
quired to produce a known acceleration [6,8,16,17]. This ap- 
proach is useful when it is desired to have a portion of an ob- 
ject follow a particular path, or to have an initial guess of  the 
torques needed to perform a motion. One can also obtain the 
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required torques by using the desired joint positions as set- 
points for closed-loop controllers [3,20]. This models robots 
controlled by position-servos, permitting kinematic control 
while still utilizing the equations of  motion. 

A solution to a specific inverse-dynamics problem can be 
encapsulated in a dedicated controller or control procedure. 
This method cleanly partitions the control from the dynamics 
equations. Although the concept has often been suggested 
in the literature, the construction of the required controller 
or control procedure has always been left to the animator 
or is constructed using a priori information, such as clinical 
data [8,16,41 ]. Many controllers have been carefully hand- 
engineered to solve specific problems. These include me- 
chanical bipeds [26,28,35], human walking [8], six-legged 
robots [24], snakes [25], and one-legged hopping robots [30]. 

Existing controllers have thus far been carefully tuned to 
solve a specific problem. Consequently, they are not likely to 
be flexible, reusable, or optimal with respect to time and en- 
ergy constraints. The state-controllers proposed in this paper 
seek to overcome these shortcomings. 

2.3 Optimal Control Methods 
Good solutions to the motion control problem have been 
achieved by viewing it as a problem in optimization. A mo- 
tion can be formulated as a two-point boundary problem with 
the start and end points of the motion sequence being con- 
straints in state space that must be met. An optimization func- 
tion reflecting the control energy expended and time taken for 
the motion [ 1,7,40] is then minimized to produce the optimal 
solution (see Figure 1). 

The method of space-time constraints by Witkin and Kass 
uses a variant of sequential quadratic programming to solve 
the optimization problem, and generates convincing motion 
[40]. The user provides expressions for the total kinetic en- 
ergy of the object and must express all other constraints in 
a mathematical form. This is something that animators are 
unlikely to be adept in doing. The solution is also costly to 
compute. Brotman and Natravali [7] present a similar ap- 
proach to solving the control problem, but make use of  a dif- 
ferent mathematical formulation. The same problems exist 
as for the method of  space-time constraints. Neither paper 
suggests the possibility of saving a motion for future reuse. 
A generalization of these approaches would be to define a 
large set of optimal-control solutions in the form of a general 
control law. 

3 State-Space Control lers  

3.1 Overview 
We now introduce the main contribution of this paper. A 
state-space controller (SSC) defines a set of control torques 
that guides an object to a specified goal from a large do- 
main of initial configurations, in a fashion that optimizes 
time taken and energy expended. A goal is characterized 
by a set of destination states, and depending on the nature 
of this set, several classes of  motion are possible. Simple 
motions include those with a stationary destination state. A 
non-stationary destination state will result in periodic mo- 
tions such as hopping or walking. One can also define mo- 
tions with goals consisting of many destination states. This 
captures motions in which the terminal velocities or positions 
of  parts of the object are irrelevant. For example, in a race, 
it is irrelevant which part of  the body crosses the finish line 
first. Lastly, "condit ional" motion can be defined: given 
more than one destination state, perform the easiest motion. 

While individual SSCs may define interesting motions in 
themselves, the real power of the approach lies in the abil- 
ity to concatenate SSCs to create a composite motion. SSCs 
can also be concatenated with other motion-generation tech- 
niques such as motor programs and key-framing, as we shall 
see later. Consider the following example. Suppose Luxo 
(the jumping lamp, Figure 2) is to hop forward several times, 
take a long forward jump to miss a ditch, and then do a back- 
flip out of  elation of surviving. Given an appropriate set 
of controllers, a user can build (and view) an animation se- 
quence by writing a script consisting of  the desired sequence 
of controllers. Figure 3 depicts the interaction of  controllers 
with an animation system. 

The concatenation of SSCs may be specified in two ways. 
One way is to run each SSC to its conclusion or for a specified 
duration. The terminal state of this SSC will then become the 
starting state of the next SSC, as in the Luxo example above. 
An alternative approach is to specify state-space breakpoints, 
in which an SSC is associated with particular regions of  state 
space. An object may thus have a complex interleaving of 
SSCs attached to it. 

3.2 Motion through State-Space 
The state of an object represents all the information required 
to specify the position and velocity of every point on the ob- 
ject. The state space of  the object is the set of  all possible 
states that the object can assume. The state of  a moving ob- 
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Figure 1: Optimal-control motion synthesis. Figure 2: The jumping lamp. 
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Figure 3: Using state-space controllers• 

ject changes with respect to time. Consider a swinging pen- 
dulum, a simple articulated object (Figure 4). The state of 
a freely-swinging pendulum continuously changes with time 
under the force of gravity• Its angular velocity plotted with 
respect to time is a near-sinusoid, and likewise for the pen- 
dulum angle. When these two functions are combined to ob- 
tain the state, the resulting path through the state-space of  the 
pendulum is the almost circular path shown in Figure 5. By 
exerting control torques, it is possible to influence the state- 
space trajectory taken by an articulated object. We can use 
this technique to guide an object toward a goal. This is the 
central principle underlying state-space controllers, 

g = l . 0 m  / ~  

m : 1.0 kg / \ 
I = 0 3 3 3 k g m  2 / \ 

• / m , l  

fixed point ~g 

o  o  t,oo \ . . . . . . .  

Figure 4: The pendulum has mass m, length l, moment of 
inertia I, angular velocity w; 0 is the CCW angle from the 
positive x-axis, and 9 is the force of gravity. 

3.3 Specification and Concatenation 
The motion to be executed by a controller is expressed in 
terms of a set of destination states for the object. The state 
transitions from an arbitrary start state to a destination state 
are optimized with respect to the time and energy taken to 
perform the motion, and can only use the internal torques 
that fall within the range of torques capable of being ex- 
erted by the object. The controller thus functions as a con- 
trol law, which defines the optimal-control solutions to a one 
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Figure 5: Pendulum swing as represented in state space. 
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Figure 6: A one boundary-point state-space controller. 

boundary-point problem (the destination state), as shown in 
Figure 6. In this case, point D represents a destination state in 
a two-dimensional state-space. The arrows show some pos- 
sible state-space paths that will be followed by the object for 
various initial states. 

A controller is defined over a user-specified, bounded region 
of state-space called its domain. Figure 7 shows the regions 
of state space over which controllers A, B, and C are defined, 
as well as three respective destination states, Da, D#, and De. 
Let So represent the initial state of the object. Suppose that 
while controller A guides the object toward Do, it is desired 
to invoke controller B. Similarly, assume that it is next de- 
sired to change to controller C. The solid line in Figure 7 in- 
dicates one such set of changes, where Si and $2 are the states 
at which the new controllers are invoked. The only con- 
straints on $1 and $2 are that Sl C Domain(A) M Domain(B) 
and $2 E Domain(B) fq Domain(C). Clearly, concatenation 
of controllers need not occur only at destination states. 

3.4 Structure of Controllers 
A controller is defined in a local co-ordinate system, and de- 
fines relative motions. Formally, a controller denotes a vector 
function f : S ~ T ,  where ,S is a state space and 7- is a set of 
torque tuples. It is entirely possible to define procedural con- 
trollers based on motor programs or kinematic interpolation 
(see below). We shall focus our discussion on the automatic 
generation of controllers that solve one-point optimal-control 
problems• 

In our current scheme, a continuous state-controller f is syn- 
thesized from a discrete table of torques in state space. An n- 
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Figure 7: Valid domains for exchanging controllers. 

dimensional volume forming the controller's domain is regu- 
larly subdivided into small n-dimensional cubes. Here n rep- 
resents the number of dimensions of the object's state space, 
or alternatively how many numbers are required to specify 
the object's state. Table elements correspond to the comers of  
the small hypercubes. The torques provided by the tables are 
made continuous through n-linear interpolation in all dimen- 
sions of the object's state space (e.g., bilinear interpolation 
in two dimensions). Hierarchical or non-uniform sampling is 
advisable, and is planned. We expect to use better-quality re- 
construction filters when we move to non-uniform sampling. 

3.5 The Generation of Controllers 
It is infeasible (and inefficient) to solve a one-point optimiza- 
tion problem by solving many instances of two-point prob- 
lems. We instead employ a divide-and-conquer technique 
called dynamic programming. The principle of dynamic pro- 
gramming is illustrated in Figure 8. Suppose path AC is opti- 
mal. Then the optimal path from any state P on AC to state C 
is given by the subpath PC of AC. If a better alternative path 
had existed (as shown by the dashed line), the optimal path 
from A to C would contain this subpath. This property is 
true of any monotonically-increasing optimization function 
of object motion, such as time or expended energy. 

A 

Figure 8: The principle of dynamic programming. 

Figure 9 illustrates how dynamic programming can be ap- 
plied to the generation of state-space controllers. Suppose 
optimal solutions are known for states located in region 1, 
which contains destination state D. To calculate the optimal 
solutions for states located in region 2, we solve a local op- 
timization problem to get from the current state to the edge 
of region 1. This provides a composite optimal solution for 
both regions. Clearly, then, an appropriate strategy for con- 
troller generation is to work backward from D, radiating the 
solutions outward. 
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Figure 9: Dynamic programming applied to an SSC. 

A more detailed picture of the local optimization problem to 
be solved is shown in Figure 10. ON and w~ are the angular 
position and angular velocity of a link of an articulated fig- 
ure. The quantization intervals of the table entries are given 
by ql and q2. The figure shows the possible state-space tra- 
jectories as projected onto the g~w~ plane of state space. The 
trajectory taken from state S depends on the angular acceler- 
ation c~n, which in turn depends on the control value (torque 
vector) contained in the table element corresponding to point 
S. The local optimization problem is to find the control value 
at S that minimizes the optimization function. 
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Figure 10: The effect of  various torques applied at S. 

The optimization function we use is given by two terms: 

tPsD 
/op,(PsD) = tPSD + KT( t )  at. (1) 

dO 

The first term represents the time taken to perform the mo- 
tion, while the second term measures the energy expended 
[1,40]. PSD represents a path through state space from an 
initial state S to a destination D, and tpsD represents the time 
taken to traverse this path. K is a user-defined vector of con- 
stants that specifies the time/energy tradeoff, and T(t) rep- 
resents the applied torques (control values). A small value 
of  K will minimize the time taken to perform the motion. A 
large value minimizes the energy used to perform the motion. 
Typical values for K depend on the magnitude of the forces 
and torques capable of being exerted by the object. For our 
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pendulum example, a value of K = 1 implies we are willing 
to exchange one second of time taken in reaching the desti- 
nation state for the "energy"  expended to exert a torque of 
1 Newton-metre for one second. Our "energy"  term is more 
properly a measure of the effort required to perform a motion. 
Other objective functions are possible. 

It is required to find the torque vector at S that produces 
a state-space path PSD such that fopt(PsD) is minimized. 
The solution we currently employ consists of calculating 
fo,t (PsD) from a set of samples of torque vectors and then 
choosing the vector that results in the minimal value of the 
optimization function. The samples are chosen by uniformly 
sampling the space of  torque vectors (since this space is 
bounded). This is admittedly a slow, brute-force approach 
whose sole virtue is that it works. For each sample torque 
vector, the state-space trajectory is calculated by simulating 
the motion of  the object. The trajectory is followed until the 
object enters a region of  state space in which the value of the 
optimization function is already known. For the path PSD 
this is indicated as point E in Figure 10. 

Once the exit state is known, the value of the optimization 
function can be determined from the equation 

tPsE 
fopt(PSD) = tPs E --[- KT( t )  dt + fopt(PED). (2) 

J0 

For the local optimization problem, the values of  the opti- 
mization function are assumed to be known at neighbouring 
points (points A, B, C, and F in Figure 10) and are linearly 
interpolated between the points. The first two terms in Eq. 2 
are simply fopt(PsE) (Eq. 1), while the last term represents 
the value interpolated between the values of the optimization 
function at B and C. Several iterations of controller compu- 
tation are required, because the values of the optimization 
function at neighbouring points may be unknown for the first 
iteration. In Figure 10, this means that the computation of a 
control value for state S is only accurate if the values of the 
optimization function are accurately known at points A, B, 
C, and F. It is difficult to sequence local optimizations such 
that each local optimization always uses accurate informa- 
tion. It is simpler to approximate this order and repeat this 
for several iterations. For each iteration, the value of the op- 
timization function will decrease. When the maximum such 
change is less than a user-specified value, the solution is as- 
sumed to be complete. An upper limit can also be placed on 
the number of iterations to use. Technically, this approach 
only yields a local minimum, but the local minimum found 
has always been satisfactory. 

3.6 The Size of State Space 
While generating controllers for objects with few degrees of  
freedom is feasible, in our current implementation the num- 
ber of  state-space dimensions becomes a problem for more 
complex articulated figures. Both the time-complexity of the 
algorithm and the size of  the state-space control table are ex- 
ponentially dependent on the number of  state-space dimen- 
sions. The size of  the table is given by a, n~ , where ds is the 
number of state-space dimensions (typically twice the num- 
ber of degrees of freedom since each degree of freedom has 
a position and velocity), and ns is the number of samples 

per state-space dimension. The time-complexity of  the al- 
gorithm is given by O(ns a~ at n t ), where dt is the number of 
torques or forces to be applied, and nt is the number of  sam- 
ples per torque or force. The problem arises because state 
space is defined as a large bounding hypercube that is uni- 
formly sampled. There are two main aspects to the prob- 
lem. First, the bounding hypercube is almost always far too 
large. A user should be allowed to eliminate irrelevant ar- 
eas of  state space. Second, uniform sampling is far from 
optimal. The sampling rate close to the destination should 
be high, but the rate should fall off dramatically with "dis- 
tance" from the destination. Sampling artifacts do not seem 
to affect the stability of the controller significantly. If the in- 
terpolation of control values between table entries causes the 
object to drift from the optimal path to the destination state, 
the controller corrects itself because the control values being 
applied are always computed based on the current state. This 
allows the controller to function properly, even if the object's 
state changes suddenly as a result of a collision involving the 
object. There is a considerable amount of interesting research 
to be performed in studying the placement and frequency of 
control-table values in state space. 

4 Dynamics Formulation 
To embed state-space controllers effectively in our anima- 
tion system (see below) it is necessary to perform physical 
simulations quickly. To date, we have focused our formu- 
lation on the planar forward dynamics of articulated figures 
(AFs). The extension to fully three-dimensional articulation 
is straightforward. (It involves adding a Coriolis-force term 
and changing moments of inertia from scalars to tensors so 
that the moment of inertia for a link becomes dependent on 
the current axis of rotation.) We assume that AFs have joints 
and links that can be represented as a tree, with one link serv- 
ing as the root link. A link can have any number of child 
links, which are connected by a rotating joint. 

The recursive Newtonian dynamics formulation we use is 
well known [4], and is based on two fundamental equations 
that balance the forces and moments exerted on each link. 
Ultimately, we solve for the linear acceleration of the root 
link and the angular acceleration for all the links with respect 
to the root link. The accelerations are then numerically inte- 
grated with an adaptive time step to determine the new ve- 
locity and position of the links. What is important about our 
approach is that, unlike most previous implementations of 
dynamics formulations, the equations of motion are formed 
symbolically, directly from the basic masses, forces, and in- 
ertial properties of  the object. This is very useful representa- 
tion. We have written a dynamics compiler which can com- 
pile a brief physical description of the AF into the desired 
equations of motion. The equations generated are of  the form 
Ax = b where A and b are dependent on the physical proper- 
ties and configuration of the links, and x represents the vector 
of unknown accelerations. The output of the dynamics com- 
piler gives the symbolic value of each of the elements of the 
matrix A and the vector b. In the implementation the values 
of  A and b are output as lines of 'C '  code so that the equa- 
tions of motion can be compiled and placed in a library. This 
makes our system more portable, and it allows us to separate 
the equations of motion from the remainder of the system. 
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Special-purpose motions could also be compiled and placed 
into this library. A symbolic representation of the equations 
of  motion also allows a programmer or a compiler to simplify 
the expressions to be computed. 

For objects containing about 12 joints or fewer [36], the equa- 
tions of motion are best solved using LU-decomposition with 
back-substitution [29] once the values of A and b are calcu- 
lated. This solution has a complexity of  O(n  3) for an AF 
with n links. O(n)  methods do exist, but in practice they are 
only useful for AFs with many degrees of freedom [2,12]. 

Almost all interesting animations of objects involve colli- 
sions with the environment and have other constraints on the 
motion of the object, such as joint limits and friction. We use 
springs and dampers to implement collisions and joint limits 
[13,16,39]. 

We have developed an animation system that incorporates the 
above dynamics formulation, and in which controllers can 
be generated offline and subsequently scripted for use in re- 
altime animation. Figure 11 depicts our animation system, 
called Mosys. 
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~ d  ~ _ ~ /  I simulat°r I I se~v . 
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Figure 11: Mosys implementation. 

5 E x a m p l e s  

We now consider several examples of  the generation of state- 
space controllers using Mosys. The generation of controllers 
is entirely separate from their use, and are usually computed 
offiine. Once computed, they allow realtime animation of the 
objects for which they were constructed. 

5.1 Periodic Motions 
A periodic motion, such as a link swinging or Luxo-lamp 
hopping corresponds to a cycle in the object's state-space. A 
controller that produces a periodic motion is created by spec- 
ifying a destination state with non-zero velocities. As the 
controller guides the object along the state-space cycle, the 
object performs a periodic motion corresponding to the states 

passed through along the way. One of the many possible pe- 
riodic, swinging motions of a frictionless, free-swinging pen- 
dulum is shown by the state-space cycle in Figure 5. 

Motions such as walking or repeated hopping can be pro- 
duced by making the object follow a cyclic path through state 
space. In this case the state representing the horizontal dis- 
tance denotes the distance to complete one cycle. The value 
of this state increases until the object lands, at which point 
the state wraps back to the starting position. This allows a 
repeated motion to be described in terms of a state-space cy- 
cle, which can be modelled by a state-space controller. This 
idea was motivated by the fact that the spinal cord of animals 
can produce a periodic sequence of control signals resulting 
in periodic walking motions [15,32]. 

5.2 Pendulum 
The pendulum has only one degree of  freedom and therefore 
has a two-dimensional state space consisting of the angle and 
the angular speed (see Figure 4). The link is free to rotate in 
both directions (without friction) and has the force of gravity 
acting on it. The pendulum also has a motor or muscle lo- 
cated at the point of  rotation that can exert a control torque 
on the pendulum. It is easy to represent the state-space path 
of  a pendulum using a plot, which helps to illustrate how gen- 
eral SSCs guide objects to a destination. 

SSCs with various destinations have been generated to con- 
trol the motion of a pendulum. Figure 12 describes an SSC 
with a destination state of  0 = 0 deg, ~ = 0 deg/s. Ap- 
plied torques are constrained to the range - 10 to 10 Nm, and 
pendulums cannot rotate at absolute angular speeds of more 
than 500 degrees per second. The state-space dimensions of 
0 and ~ are divided into 36 and 21 discrete intervals respec- 
tively, yielding SSCs with a total of  756 entries. Figure 13 
summarizes the pendulum SSCs that were generated. 

# controller for a single link 
# controller description commands: 
# ssd <name> <min> <max> <steps> 
# torq <name> <tmin> <tmax> <tsteps> <Ktorq> 
# dest <state> 

dyn linkl # dynamics equations 

ssd omega -500.0 500.0 21 
ssd angle -180 170 36 
wrap angle 
torq torque -10.0 I0.0 ii 
dest angle=O omega=O 

0.1 

Figure 12: Specification for pendulum SSCs 

name destination state generation 
0 (deg) w (deg/s) time (s) 

A 0 0 381 
B 120 0 452 
C -120 0 341 
D 0 300 460 
E -120 -300 459 
F 160 250 454 

Figure 13: Six pendulum controllers. Controllers 
puted on a Sun 3/60 workstation. 

were corn- 
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Figures 14 and 16 depict some state-space plots of pendulum 
motion under control of the SSCs. The scales used for the 
state-space plots in are as in Figure 5. The curve connect- 
ing each starting state and the destination state represents the 
state-space path'that the pendulum takes when guided by the 
SSC. The right and left boundaries of the state-space plots 
are connected, giving each plot a cylindrical topology. 

Controller A 

. - -  m 

Controller E 

Controller B 

Controller F 

Figure 14: State-space trajectories followed using various 
SSCs (C and D omitted). The destination state is given by an 
encircled X, while some sample start states are given by the 
small squares. 

Controllers D, E, and F define periodic motions because their 
destination states specify non-zero angular velocities (see 
above). As seen in Figure 14, these controllers eventually 
drive the pendulum toward their respective state-space cy- 
cles, from all initial states. The state-space cycles are indi- 
cated in the figure with a thick line. 

The six different SSCs form a library of motion commands 
for the pendulum. Figure 15 shows an animation script used 
to 'animate' the pendulum, assuming that one would want to 
endow a pendulum with a 'muscle'  that can exert a torque at 
the joint. Figure 16 depicts the resulting motion. 

The animation begins with controller B being used to drive 
the pendulum to the destination state for controller B. The 
point ' sB'  in Figure 16 shows the point at which controller B 
is invoked, and point 'dB'  denotes the destination state for 
controller B. After 0.4 seconds of  proceeding toward dB, con- 
troller A is invoked for 0.7 seconds. Before it reaches dA (the 
destination state for controller A), controller D is invoked for 
0.6 seconds. The remainder of the animation script consists 
of similar exchanges of controllers. 

While the state of the pendulum is continuous over time, 
torques (and hence accelerations) are discontinuous at the 
point of  controller exchange. Such discontinuities might de- 
tract from the realism of the resulting motion because real 
actuators (muscles or motors) cannot instantaneously change 
their applied torque or force. A simple solution to this prob- 
lem is to apply a slew limitation to the control values. This 
would limit the absolute rate of change of the control value, 

state link -135,350 
swapcon link conB.ctab 
slm 0.4 
swapcon 
smm 0.7 
swapcon 
slm 0.6 
swapcon 
sam 0.4 
swapcon 
sam 0.4 
swapcon 
sxm 0.7 

# starting state 
# invoke controller B 
# simulate 0.4 seconds 

link conA.ctab # invoke controller A 
# simulate 0.7 seconds 

link conD.ctab # invoke controller D 
# simulate 0.6 seconds 

link conE.ctab # invoke controller E 
# simulate 0.4 seconds 

link conC.ctab # invoke controller C 
# simulate 0.4 seconds 

link conF.ctab # invoke controller F 
# simulate 0.7 seconds 

Figure 15: A pendulum animation script. 

D 

dA adB 

Figure 16: State-space trajectory of pendulum. 

resulting in C (2) continuous motion. 

6 The Self-Parking Car 
We now consider the design of an SSC that is to parallel-park 
a car on the street as shown in Figure 17. The car has five 
state-space dimensions shown in Figure 18. The destination 
state for the ear is given by the dotted line in Figure 17, with 
the car being at rest. The domain of the controller is marked 
with a dashed line. The reference point of the car, located be- 
tween the front wheels, must remain within this region. The 
animator can place the car anywhere within the domain of the 
SSC and have it park in a fashion similar to people(!). The 
walls in Figure 17 are additional obstacles to be avoided. 

The car has two control variables: ~vst, the rate at which the 
steering wheel turns, and ct~, the angular acceleration or de- 
celeration of  the front wheels of the car. 

y (metres) 

5 

curb//~ 

I 

i•_•controller domain 
..... i ] 

_ t _ _  

'.~.~,'.."~~ walls 

~ ~ iestination state > 

1'0 x (metres) 

Figure 17: The street (non-contact parking only). 
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Figure 18: State-space dimensions for a car. 

The final SSC for the car has 13250 states. All table en- 
tries that correspond to collision states are removed while 
the state-space is being generated; thus the SSC algorithm 
knows these states are out of the controller domain. Some 
results of the car SSC in operation are shown in a sequence 
of frames in Figure 19. The position of the car is shown every 
0.3 seconds. The parked cars on the right are used to provide 
a reference showing the destination state for the car. In all six 
cases shown, the car is placed in the initial state at rest, but 
the wheels are oriented differently. The car SSC is then in- 
voked to park the car. The bottom-left and top-right cars are 
especially interesting. In these cases the cars back up past the 
desired destination and then drive forward to straighten the 
wheels. 

7 Luxo  

In our next example, Luxo will perform a sequence of  in- 
teresting motions, such as jumps and flips. Because we use 
uniform sampling of the state space to generate a continuous 
controller, two practical problems arise in trying to create a 
jump or flip controller for Luxo. The first is the size of  the 
state space. As illustrated in Figure 20, Luxo has 5 degrees of 
freedom when in the air, and thus has a 10-dimensional state 
space. The second is that many of the most important states 
during a jump occur during takeoff and landing, when only 
one edge of the lamp's base is in contact with the ground. 
Since the state space is sampled uniformly without paying 
special attention to interactions with the environment (like 
the floor), collisions may not be properly sampled. The prob- 
lem is illustrated in Figure 21, which shows the states of suc- 
cessive table entries. The second state has its base protruding 
through the floor, and would therefore be discarded from the 
SSC table (removing it from the controller's domain). The 
state that is really of interest is the third one, with the left side 
of the base touching the ground. Both of the above problems 
serve to show that our choice of uniform sampling is some- 
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Figure 19: Animation usmg the car-parking SSC. 

I 
I 

what crude. Fortunately, the remedy for the case of  Luxo is 
not difficult. 

03 

02 Y 

Figure 20: Degrees of freedom for a jumping lamp. 

0 = 1 0  ° 0 = 2 0  o 0 =  13.9 ° 

Figure 21: The collision sampling problem. 

The problem of  state-space size can be solved by breaking 
up canonical Luxo motions into two pieces: airborne motion, 
and motion on the ground (i.e., takeoff/landing motion). It is 
easy to write motor programs (i.e., procedural functions of  
torques over time) to make Luxo perform a flip or jump. It is 
very much more difficult to do a correct landing. We thus use 
motor programs for the airborne motions, and a controller to 
guide Luxo to a safe landing and to prepare it for the next mo- 
tion. All airborne motions begin from a distinguished starting 
state, which coincides with the destination state of  the "land- 
ing" controller. Thus motions based on motor programs can 
be easily concatenated with motions based on SSCs. The 
" landing" controller only has to deal with 2 degrees of free- 
dom, or a four-dimensional state space, which is quite feasi- 
ble. 
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The dynamics compiler was used to generate the equations 
of motion for Luxo. Some code was added to the resulting 
dynamics procedure in order to model collisions with the en- 
vironment, consisting of the floor and a set of stairs. Four mo- 
tions were created for the Luxo animation: a forward jump, a 
single back flip, a double backflip, and a single backflip down 
a step. Once controllers and motor programs for the individ- 
ual motions have been generated, scripting various anima- 
tions is a simple exercise. Figure 22 is a sample back-flip 
from the animation. See also the photographs at the end of 
this paper. 

Figure 22: A Luxo back-flip 

A brief comparison with previous animations of Luxo is 
informative. The Luxo Jr. video [22] by Pixar was pro- 
duced entirely using keyframing. The motion was synthe- 
sized manually and succeeds in looking realistic because of  
the formidable artistic talent of  the animators. The reper- 
toire of  motions that Luxo performs in the video is not large 
or complex; most motions are performed with the base on 
the ground. Witkin and Kass obtain a jumping motion for 
Luxo by formulating it as a two-boundary-point optimization 
problem [40]. The results produced are impressive, but their 
formulation appears to have a problem with the takeoff and 
landing occurring with only one edge of the base in contact 
with the ground. Their Luxo jump sequence has a takeoff 
and landing with a flat base. From our experience with the 
torques necessary to make Luxo perform a jump, we are con- 
vinced that a jump with a flat base on takeoff and landing is 
very difficult to perform and would therefore not be a natural 
mode of locomotion for a lamp! 

8 Conclusions 
We have introduced a new approach to reusable motion syn- 
thesis based on state-space controllers. The controllers pro- 
duced are unique in that they are used to control the simula- 
tion of the object with no a priori knowledge of  the object 
or how it should move, apart from a destination goal. The 
forward dynamics of articulated figures is automatically gen- 
erated from a basic physical description of the object. 

While the use of  controllers in physically-based motion syn- 
thesis is very encouraging, there are several aspects that re- 
quire more thought. First, we wish to carefully compare con- 
troller response to the actual optimal solution. This may al- 
low us to develop error-control mechanisms for controller 
generation. Second, we would like to create hierarchical or 
distributed controller structures, in which more "abstract" 
controllers actually manage lower-level controllers in re- 
sponse to events in the system. Third, a controller is cur- 

rently quite dependent on the specific physical parameters of 
an object. To what extent can controllers themselves be pa- 
rameterized by, for example, interpolating between similar 
controllers? Fourth, faster controller-generation techniques 
are required. Fifth, better controller sampling and reconstruc- 
tion techniques are needed. Sixth, we wish to develop a better 
user interface for scripting controllers into significant anima- 
tions. 
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