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Learning Layouts for Single-Page Graphic
Designs
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Abstract—This paper presents an approach for automatically creating graphic design layouts using a new energy-based model derived from
design principles. The model includes several new algorithms for analyzing graphic designs, including the prediction of perceived importance,
alignment detection, and hierarchical segmentation. Given the model, we use optimization to synthesize new layouts for a variety of single-
page graphic designs. Model parameters are learned with Nonlinear Inverse Optimization (NIO) from a small number of example layouts.
To demonstrate our approach, we show results for applications including generating design layouts in various styles, retargeting designs to
new sizes, and improving existing designs. We also compare our automatic results with designs created using crowdsourcing and show that
our approach performs slightly better than novice designers.
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1 INTRODUCTION

Graphic design is ubiquitous in modern life, including in
packaging, advertisements, books, and websites, among
many others. Designs are often difficult to create, as they
must clearly convey information while also satisfying aes-
thetic goals. Designers must now also create designs for
a wide variety of display sizes, from mobile phones to
posters, and must often retarget designs from different sizes.
Furthermore, many designs are created by inexperienced
users with little training in graphic design. Automatic tools
for creating, adapting, and improving graphic designs could
greatly aid designers, and in particular, novice users.

This paper considers an important class of designs: single-
page graphic designs such as advertisements, fliers, or
posters (Figure 1). These designs often consist of a small
number of text and graphical elements. While there is
previous work on automatically creating web-pages and
article-type designs, there is little research on generating
single-page graphic designs. These designs are challenging
as they are less structured and have a wider range of sizes
and aspect ratios. Aesthetics are also important, as designs
must often be eye-catching and visually pleasing.

Automating single-page graphic design is a complex and
unsolved problem. In this paper we focus on the layout
problem: specifying the locations and sizes of design
elements. We assume a set of text and graphical elements
are provided as inputs along with associated meta-data,
such as the number of lines for text elements. Our goal
is to output a visually pleasing arrangement of elements in
a particular style. Modeling layout (i.e., element position
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and scale) is an important first step towards formalizing the
difficult problem of design. More generally, design requires
making many choices, including colours, fonts, and line
breaks; we leave selecting these variables to future work.

We present a new energy-based model for evaluating lay-
outs based on graphic design principles and stylistic goals.
Due to the complexity of graphic designs, our approach
has two stages. Given a design, we first perform a novel
analysis stage that infers hidden variables corresponding
to perceptual properties such as perceived importance,
alignment, and grouping. These variables are then used as
part of the model to evaluate a design. For example, the
system analyzes perceived element alignment in a layout,
and then an energy term penalizes misalignments. Given
this model, we use optimization to synthesize a new layout.
Our model has a large number of parameters, and we show
how to learn their values from one or more examples using
Nonlinear Inverse Optimization (NIO) [1].

We apply our model to three applications. First, the system
can synthesize new design layouts in different styles learned
from examples. Second, given an existing design, the sys-
tem can retarget the design to a new size and/or aspect ratio.
Lastly, we show a “design checker” that can improve an
existing design to better match basic principles of graphic
design. Model parameters are learned independently for
each application using NIO and a few examples. Our system
is designed for quality rather than efficiency, and currently
is too slow for interactive applications, which we leave for
future work (Section 10).

To evaluate our method, we automatically generate, retar-
get, and improve a number of designs. We compare our
retargeting results with designs created by a professional
designer, and also with novice users performing the same
tasks on Mechanical Turk. We show that our results are
generally as good as those produced by the average human
in our crowdsourced study, though not at the level of a
professional designer. Graphic design is a particularly hard
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Fig. 1: We present a model of single-page graphic designs based on design principles such as alignment and balance. The
model can synthesize layouts in various styles learned from examples, retarget layouts to different sizes, and improve
designs based on design principles.

task to automate, as even humans who are untrained in
design are not particularly good at it; in contrast, classic
problems like speech recognition and computer vision are
performed well by most humans. Nonetheless, automat-
ically producing results on par with untrained humans
represents significant progress on this unsolved problem.

2 RELATED WORK

Remarkably, there is little work on automating single-page
graphic design. A closely-related problem is the adaptive
layout of primarily text-based documents such as arti-
cles [3]. In this case, templates and dynamic programming
can be used to efficiently generate layouts [4], [5], [6].
However, single-page graphic designs are more free-form
and do not easily conform to templates or a linear read-
order. Harrington et al. [7] present an energy function
to measure the aesthetics of a layout that also includes
terms like alignment and balance; however, they do not
show any designs and offer no evaluation. Balinsky et
al. describe measures of alignment in documents [8] as
well as an aesthetics-driven layout engine for non-flow
documents [9]; however, only a single result is shown, and
no evaluation is presented. Gonzalez-Morcillo [10] present
a system for creating single-page graphic designs. However,
this approach cannot learn different styles and uses a
simple layout technique that normally aligns elements to
margins. Jahanian et al. [11] analyze the visual saliency of
photographs to guide placement of text in magazine covers.

Our general approach of defining and optimizing an energy
function is common for other layout problems, such as
generic text and figure blocks [12], photo albums [13],
route maps [14], and furniture layout [15], [16]. These
approaches generally involve simple hand-tuned energy
functions with a few terms such as alignment or balance.

A few approaches in design synthesis learn model param-
eters. In interface design, Gajos and Weld [17] define a
model to specify the position and types of widgets. Users
select between different interfaces and a margin-based
learning approach sets the linear weights of the objective
function. Vollick et al. [18] model layouts of labels of parts
in technical diagrams. An energy-based model evaluates
label layouts, and Nonlinear Inverse Optimization (NIO)
learns parameters to create layouts in different styles.

Analyzing document structure is a well-studied problem,
particularly for understanding scanned documents such as
articles, book pages, or reports [19]. One basic problem is
inferring the parts of the design and the overall structure.
Another important task is analyzing the logical structure
of design, for example, determining the title, abstract,
and paragraphs in a document. A common approach for
such analysis is grammar-based parsing, where parameters
are either hand-tuned or learned using labelled training
documents [20]. Talton et al. [21] presents an approach
that learns grammar production rules to parse web-pages.

A related analysis problem is design segmentation. Rosen-
holtz et al. [22] segment user interfaces and infographics
using orientation or lightness. Designers often use grids,
either explicitly or implicitly, to organize elements [23].
Baluja [24] uses a grid-based segmentation of web-pages
for mobile browsing, while Krishnamoorthy et al. [25] hi-
erarchically segment journal pages into rectangular regions.

A related problem to our graphic design retargeting appli-
cation is the retargeting of web-pages to different display
sizes. Kumar et al. [26] present a learning-based system for
example-based web page retargeting. Mappings between
DOM (Document Object Model) elements of two web
pages are learned from user data, allowing style transfer and
retargeting. Baluja [24] retargets by segmenting a web-page
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into a 3x3 grid and magnifies these regions. However, these
approaches are specific to web-page design; single-page
graphic designs are more free-form and graphical, and often
do not have innate structure that maps easily to a DOM
model. There has also been significant recent progress in
image retargeting [27]. Liu et al. [2] use retargeting to
optimize image composition using a simple objective func-
tion based on photographic principles. However, retargeting
algorithms are inappropriate for design retargeting, which
can modify element positions and scales.

3 OVERVIEW

This work defines a graphic design as a set of visual
elements, including text and graphics, and represented
as images with associated meta-data. We focus on the
layout problem: determining the position and scale of
these elements, denoted X. Our overall goal is to create
layouts which respect the principles of graphic design, such
as alignment and symmetry in a variety of styles. Our
main contribution is an energy-based model E(X; θ) which
evaluates a layout X using parameters θ which define the
desired style and intentions of the user (Section 4).

Due to the complexity of the problem, we use a multi-
stage approach. To evaluate the energy of a layout, the
system first estimates hidden variables (h) that correspond
to important visual properties. The hidden variables are
the perceived importance of each element, a grid-based
segmentation of the layout, and labels specifying alignment
groups (Section 5). We then define our energy terms in
terms of these hidden variables as Eh(X,h; θ). The energy
function enforces many other design principles, including
alignment, symmetry, and white space (Section 6).

Given this energy function and a suitable optimizer for
X (Section 7), the system can generate design layouts
in a variety of styles. Due to its high dimensionality,
an important goal is learning θ without requiring time-
consuming manual parameter tuning. We use Nonlinear
Inverse Optimization (Section 8) to learn parameters θ,
which are used to generate layouts for new designs.

We present applications of the model, including results
and evaluation, in Section 9. First, we demonstrate layout
synthesis, where layouts are generated for designs in a
variety of styles with learned parameters. We then show
design retargeting results, where a previous layout Xp is
modified for a different output size. We also show results
of design improvement, which takes an existing layout and
optimizes it to enforce design principles.

4 GRAPHIC DESIGN MODEL

We measure the overall quality of a layout as a weighted
sum of energy terms:

Eh(X,h; θ) =
∑
i

wiEi(X,h; αi,Xp) (1)

A design layout X is defined as the x and y positions,
height, and alternate ID of each element. Alternate IDs
select between different alternate elements, usually text
blocks with different internal alignments. The energy terms
Ei are defined in Sec. 6 and the appendix. h are the
hidden variables described in Sec. 5, and θ are the model
parameters. When the model is used for design retargeting
or improvement, the user provides a previous layout Xp.

The inputs to the model include the design elements, meta-
data for each element, an output width and height, and
optionally a previous layout Xp. Given the inputs and the
model, our system optimizes X to synthesize a design
layout. By changing the parameters θ, we can generate
layouts in various styles.

Elements are provided as images, along with user-defined
meta-data. The system only requires three meta-data values
for each element: the class (text or graphics), the number
of lines (for text elements), and an importance value (low,
medium, high, or very high). Optionally, if the element is
part of a group, a group ID may be provided. The user may
also provide binary masks to specify if a person or face is
present in the graphic, or an important region which cannot
be obscured by text. However, these masks are not required
nor must they be precisely drawn.

Model parameters are divided into two groups, θ = [w,α].
Each energy term Ei has a positive weight wi, and most
terms have a non-linearity parameter αi. The weights are
constrained to be positive. For example, a positive weight
for the misalignment energy term means the model can only
encourage alignment. We also include some reversed energy
terms. For example, one term encourages symmetry, and
a reversed term encourages asymmetry. The sum of these
two non-linear terms, both with positive weights, allows the
model control over the preferred amount of symmetry.

We use a sigmoid function in many of our energy terms:
S(x; α) = arctan(xα)/ arctan(α). We often use it to
reshape energy terms as S(Ei(X);α), as large values of
α make the energy more sensitive to small changes, such
as in styles with little white space between elements. In
the appendix, we include a full listing of the parameters as
well as their initial values.

5 DESIGN ANALYSIS/HIDDEN VARIABLES

Before evaluating a layout, the system performs an analysis
stage to infer hidden variables corresponding to how a
human viewer perceives the layout. We infer three key
variables: the perceived importance of each element, labels
specifying element alignment, and a grid-based segmen-
tation. These perceptual properties cannot be provided
initially as meta-data or a document structure; they are a
function of the arrangement of elements on the page. This
section explains our approaches for computing these hidden
variables; Section 6 explains how the variables are used in
the energy function.
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Fig. 2: Importance Maps. Given a design (top left),
MTurk users mark what they consider important. While
the individual maps are noisy, when averaged over 20-30
users (bottom right), the mean maps are reasonable. Design
courtesy of Flickr user Dániel Perlaky.

5.1 Importance Map

When creating a design, controlling the perceived impor-
tance of various elements is crucial, and designers often
arrange elements to convey their importance [28]. Colour,
size, and location all contribute to an element’s perceived
importance, but formulating a mathematical formula is
difficult. There are obviously relative differences in impor-
tance: a large graphic in the center of the design is far
more important than a small URL in a corner. But how
does location affect importance generally? How does the
importance depend on other elements?

Importance is related to image saliency [29], [30], [31],
[32], which is usually equated to predicting eye-fixations.
Eye fixations vary significantly over text blocks for exam-
ple, even though the text’s importance is uniform. Eye-
fixations may also occur in unimportant regions as the user
scans the design.

Crowdsourced Design Importance. Inspired by Judd [31],
we model importance using a data-driven approach. First,
we collected 1,075 graphic designs from Flickr. We then
performed an MTurk study asking 35 users to label im-
portant regions in a design, and averaged the responses
over all users. The system then computes per-pixel features,
described below, and trains a linear regression model on the
mean importance map. This model is then applied to new
designs to predict the importance of elements.

The individual MTurk importance maps are often quite
noisy, with significant variation between users. However,
averaged over many users (20-30), the mean importance
maps often give a plausible ranking of importance. See
Fig. 2 for examples of individual user’s importance maps,
Fig. 3 for several mean importance maps, and the supple-
mentary material for more examples. This result is surpris-
ing, because the mean importance should not necessarily
create a relative ranking of elements; if everyone performed
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Fig. 3: Design Importance. Given a design, we show the
mean MTurk importance map, the saliency model of Gofer-
man [32], and our importance model. Designs courtesy of
William Berry, Dániel Perlaky, and Ben Keenan.

the task the same, there would be no relative difference.

We hypothesize that each element has an unknown impor-
tance rank, and that people choose different numbers of
elements to label. Some users label only the most important
element, others only a few, others most of the elements.
If each person marks the top k elements, for an individual
value of k, we will produce the correct ranking by averaging
the “votes” of all users.

Features. To learn these importance maps, we calculate
per-pixel features to train a linear regression model. Fea-
tures include RGB colour channels, efficient low-level
saliency models [29], [30], and multi-scale contrast fea-
tures [33]. Many designers suggest placing elements on the
“Third lines” of the image; this is known as the Rule of
Thirds. We include global position features including the
distance to the Third lines, power points (intersections of
the Third lines), image center, boundaries, and diagonals.

Our features include labeling of people, faces, and text.
Because existing methods for face and person detection
often fail for graphic designs; we use crowdsourcing to
find these labels. For our training data, MTurk users drew
binary masks for both people and faces and the average for
each was taken over approximately 30 users. In a separate
task, workers marked text blocks along with the number of
lines in each block. See Appendix §A for examples. The
system computes per-pixel features including the fraction
of labels over all users, at least one user labeling, the user
count, and the mean labeling over the entire image. The
connected components of the label maps are computed and
the segment size (both absolute and relative to the largest
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segment) and the number of segments are used as features.
Text features include the size (both absolute and relative to
the height), and number of lines.

Note that these crowdsourced features are used only for
training the importance model. When we apply the model
on synthesized layouts (Fig. 4), text location and size are
known during synthesis, and person and face label images
can be created by a single user. We do not require MTurk
labels when synthesizing designs.

Prediction. The model computes features y(p) for each
pixel p and predicts a per-pixel importance value r(p)
using a linear regression of the features, learned with
LASSO [34]. Fig. 3 shows a few example designs. 90%
of the designs were used for training, and 10% for test-
ing. These results show that our model predicts human
importance maps reasonably well, while saliency models
often fail. This result is unsurprising since these methods
predict eye-fixations, not importance. Saliency methods are
also designed for natural images, and fail to capture the
importance of text, for example. See Appendix §A for a
quantitive comparison with various saliency models.

5.2 Alignment

The alignment of elements is crucial to how viewers
perceive a design. Our system performs an analysis stage
which labels all aligned elements as well as alignment
groups. Elements with slight misalignments are also labeled
as aligned, as the model will later penalize them. We define
6 possible alignments types: Left, X-Center, Right Top, Y-
Center, and Bottom. Alignment indicator variables between
elements i and j are denoted Iaij .

We use simple heuristics to compute alignments using ele-
ment bounding boxes. First, the difference in the bounding
box edge or center position must be below a threshold:

Aa
ij = (daij < τalign) (2)

where a is the alignment types, daij indicates the distance
between two elements i and j depending on the alignment
type using element’s bounding boxes. For example, if a =
L then dLij measures the difference in the left edge of the
bounding box for both elements. The threshold was set to
τalign = 0.065. Note that slightly misaligned elements are
still labelled as aligned, allowing slightly misalignments to
be penalized by the energy model.

Secondly, elements may not align if another element lies
between them:

Bij = (bij < 1) (3)

where bij is the number of elements between i and j.

Lastly, if a text block is internally aligned, it may only
align with other elements with that alignment type. For
example, a left-aligned text block may only left-align with
another element. We denote the internal alignment indicator

variable as Na
i . Single-line text and graphical elements can

align to any type.

The alignment labeling is the conjunction of these terms:

Iaij =A
a
ij ∧Bij ∧Na

i ∧Na
j (4)

Within each axis, two elements may normally align by only
a single type. The indicator variable with the minimum
alignment distance daij is set to 1, and the other two are set
to 0. However, if all types align perfectly (daij = 0 for all
types) then all three indicators are set to 1.

We next define an alignment group as a connected set
of aligned elements. If elements i and k are aligned, and
elements k and j are aligned by the same type, then i and
j are set to aligned (Iaij = Iaik ∧ Iakj). We denote group
membership using binary indicator variables Iig . Fig. 4
illustrates the alignment labeling graphically. See Appendix
§C.1 for more examples of alignment and grouping.

5.3 Hierarchical Segmentation

Designers often use grids or rectangular regions to organize
elements. A viewer perceives this structure and relates
alignment, grouping, and symmetry to these regions. Our
system estimates this layout structure and calculates en-
ergy terms based on it. The algorithm takes as input the
layout, binary masks for each element, and element classes
(graphic or text); the output is a hierarchical segmentation
of the design into non-overlapping rectangular regions.

The proposed algorithm segments a design by vertically or
horizontally splitting regions which contain both text and
graphics. Each split is evaluated using a cost function which
measures the intersection of the split with elements, the
separation between graphic and text elements, and distance
to the region center. The algorithm recursively segments
regions until a region contains only elements of the same
class, or a user-specified maximum depth is reached. Lastly,
empty or adjacent regions with the same element classes
are merged. See Appendix §B for more examples and
visualizations of the intersection costs.

Objective Function. Given a rectangular region r, a cut
c is defined as an x or y position in r which splits the
region into two rectangular sub-regions r1 and r2. The
system evaluates cuts based on three simple criteria. First,
cuts should not be placed over elements, especially near an
element’s center. One energy term penalizes cuts based on
the distance to each element’s bounding box. Cuts nearer
the region boundaries pay a low cost, while cuts near the
center pay a high cost:

Fint(c) =
1

n

∑
p∈c

max
i

(Ipi δ
c
i (p))

2 (5)

where p ∈ c are the pixels p along the cut c, Ipi is an
indicator variable indicating if element i overlaps with pixel
p, and δci (p) is the distance of pixel p to the bounding box of
element i. This distance depends on the cut type c; vertical
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Fig. 4: Analysis Algorithms. Left: Alignment detection. Rectangle colours indicate the detected alignment groups, and
the deviation of the rectangles from the connector lines indicates misalignment. Middle: Importance prediction. Warmer
colours indicate higher importance. Right: Segmentation of the design into text and graphic regions.

boundary distances are used for horizontal cuts, and vice-
versa for vertical cuts.

Second, the algorithm prefers that regions contain only text
or graphical elements. An energy term evaluates the sub-
regions r1 and r2 and counts the number of elements of
the same class (text or graphics) in both regions.

Felm(c) = −(N(r1) +N(r2)) (6)

where N(r) defines the number of elements in region r if
all elements have the same class, and 0 otherwise.

Third, the algorithm prefers evenly splitting regions, so the
normalized distance of the cut to the region center rc is:

Fcen(c) =
|c− rc|
rl

(7)

where rc is the region center’s location, and rl is the region
length. The system evaluates a cut using the following
function:

F (c) = wintFint(c) + welmFelm(c) + wcenFcen(c) (8)

In all experiments, wint = 100, welm = 100, wcen =
1. Using the cumulative sum of the intersection distances
allows the parse to be computed quite efficiently (5-10 ms
for 100x150 pixels). Fig. 4 (right) shows an example.

6 GRAPHIC DESIGN ENERGY TERMS

We next describe our energy-based model of graphic de-
sign. Because of the complexity of the model, we describe
these terms at a high level, and provide mathematical details
in Appendix §C. Our model is designed to balance many
goals, such as clearly conveying information, aesthetics,
and stylistic variation. Our modeling choices are inspired by
principles gleaned from the graphic design literature [35],
[28], [36], [37], [38], and our own observations. We outline
these principles, and the energy terms we created to capture
them, as well as others we found necessary.

Building a model for graphic design is challenging for
several reasons. We want an energy function that captures
a range of styles. However, the model must also produce a
consistent style on designs with different content. Further-
more, many principles of design, and their corresponding
energy terms, are related and interact with one another.

For example, white space is an important part of graphic
design. But many aspects of design affect white space, such
as element scale or symmetry. Finding a working set of
energy terms is non-trivial; a variety of terms are required
to capture a range of styles, but, with too many, the model
may overfit while learning.

Lastly, modeling graphic design well is difficult because of
our exposure to it and sensitivity to slight mistakes. Most
people see many graphic designs daily, so we are attuned to
successful designs. It is worth noting that, while previous
work have proposed related terms, none have created a
full model which can synthesize designs such as posters
or advertisements in a variety of styles.

Our methodology involved studying design literature and
examples for stylistic variation or functionality. We then
created relevant energy terms, optimized designs with these
terms, then refined the terms and re-optimized. Parameters
were initially hand-tuned, but, as the model increased in
complexity, Nonlinear Inverse Optimization (NIO) (Sec. 8)
was used to learn model parameters. NIO was also used to
remove redundant energy terms; if after learning on several
styles, an energy term was not used, it was removed. For
example, one term measured the fraction of the design
covered by graphical elements, and was removed after it
was found to be redundant. In Appendix §C, we show the
effect of removing various energy terms from the model.

Alignment. Correct alignment is an important aspect of
design that has been modelled in other layout applica-
tions [15], [18], [4]. Elements are aligned on the page to
indicate organizational structure, and for aesthetics.

We define energy terms measuring the fraction of element
pairs that align with a particular alignment type (Left, X-
Center, Right, Top, Y-Center, Bottom). Slight misalignment
of elements is also visually displeasing; the model uses a
robust cost function that heavily penalizes slight misalign-
ments. The model encourages larger alignment groups with
an energy term that measures the mean alignment group
size. Larger alignment groups are preferred as they produce
simpler designs, with more unity between elements.

Balance. One of the most common design principles is
visual balance [35], [36], [28]. Symmetric balance is a
common way of organizing elements in a stable and con-
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Fig. 5: Symmetry Types. Global symmetry is defined over
the entire design; region symmetry is defined with respect
to the segmentation regions (shown with red lines). The top
region has both symmetry types; the bottom two regions
have only region symmetry.

ventional layout. Many modern design styles use asymme-
try, as these designs are often more dynamic, but require
greater design skill. To measure design symmetry, the
model calculates the fraction of element pixels which have
a symmetric counterpart along the x and y axis. Separate
energy terms are defined for x and y axis symmetry, as
well for text and graphical elements. We define a similar
asymmetry measure for asymmetric styles.

Designers often symmetrize elements not with the overall
page, but with regions of the page (Fig. 5). Given the
hierarchical segmentation of Sec. 5.3, we define a symmetry
term using the symmetric counterpart of each pixel along
the x-axis within the region. This region-based symmetry is
the motivation for our segmentation algorithm, and allows
simple hierarchical design styles like Fig. 5.

Emphasis. Successful designs highlight important elements
and lead the viewer’s eye to key text or graphics. Many
factors influence emphasis, including isolation, placement,
scale, or contrast [36]. However, it is unclear how these
factors relate, or should even be defined, to determine
visual importance. Designers also often establish a desired
hierarchy of importance for elements [35], [28], [36], with
more important elements being visually emphasized.

The model matches the perceived importance of elements
to their desired importance. The system estimates the
perceived visual importance of each element (Sec. 5.1).
Estimated values are compared to fixed scalar importance
values for each element using Pearson correlation, with
separate energy terms for graphical and text elements.
The desired importance values are provided as meta-data
during the design creation process and are not estimated
by the system. In practice, these values are usually simple
to specify. White [28] recommends designers establish an
importance hierarchy of at most 3 levels, as more can
become confusing. In our examples we usually specify
3 levels of importance: low, medium, and high, though
occasionally we used 4 levels.

White Space. White space in graphic designs is fundamen-
tal for readability and aesthetics. Element distance is also
closely related to the principle of proximity [38], [28], [37],

as elements placed near each other may appear to be related.
White space also influences the overall design style; many
modern designs use significant white space. White space
‘trapped’ between elements can also be distracting [7], [28].
Our solution is to model white space with two types of
terms: high-level terms which model the overall white space
in the design, and element terms which model pairwise
distances or margins.

For our high-level terms, the model encourages white space
based on the fraction of the design not covered by an
element. The model can also penalize large regions of
empty white space based on a distance map to the nearest
element, with the mean taken over the entire image.

We next model different kinds of white space with separate
energy terms. First, the system measures the mean of the
distances for each element to the nearest element, allowing
energy terms to increase or decrease the white space be-
tween elements. Secondly, energy terms encourage uniform
vertical spacing of text elements by measuring the variance
in vertical distances between adjacent elements. Lastly,
energy terms also capture margin white space. Border
margins for each element are defined as the distance of
the bounding box edge to the respective boundary. Energy
terms measure the mean of the nearest margin over all
text and graphical elements, and control the desired margin
size. The final white space in the design results from a
combination of these and other terms.

Scale. Elements must be large enough to view, but not so
large that the design becomes cluttered and aesthetically
displeasing. Other terms like emphasis and white space
indirectly affect the scale of elements, but we found it
useful to include separate energy terms to model element
size. White space in designs with a few elements may
be quite different than designs with many elements, so
directly modeling scale helps with transferring styles to
other designs.

Text element size is defined as the element height divided
by the number of lines, weighted by a scaling parameter,
and normalized by the design height. The size for graphical
elements is the bounding box area, normalized by the
design size. Energy terms for text and graphical elements
encourage larger sizes, and also penalize the variance of
text and graphic sizes, which are useful for styles with less
contrast between elements. Readability is a basic require-
ment; the model penalizes elements below a minimum size.

Flow. A good design layout presents information in a clear
read-order. However, modeling the visual flow of graphic
designs is a difficult open problem. English is read top-
down, left-right; designs which deviate from this norm must
do so knowingly [28], [35]. Our model uses a simple po-
sitioning heuristic which places important elements higher
and to the left of less important elements. See Fig. 6 for an
example. These flow heuristics also interact with emphasis
energy terms, as elements nearer the design center are
considered more important.



IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 8

Fig. 6: Design Flow. The model uses simple heuristics for
specifying read-order. Left: the unimportant elements are
above and to the right of more important elements. Right:
improved read-order.

The overall location of graphical and text elements also
affects the design style. The model also uses positioning
terms using the mean distances from the margins of the
page, for both text and graphical elements. The model
can thus specify the rough position of text and graphics
for particular styles. We also measure the variance of the
element positions for both text and graphical elements.

Overlap and Boundaries. Overlapping elements are com-
mon in many designs and absent from others. We define
several types of overlap, including overlap of elements on
text, overlap of text on graphics, and overlap of graphics on
other graphics. Users may also provide fixed binary masks,
to prevent overlapping important regions such as faces or
logos. The model includes an energy term which measures
the overlap in these regions. The model also penalizes hard-
to-read text using a text contrast measure based on the
colour difference between an element and the design before
the element was drawn.

The model controls how much elements may extend past
the boundaries by computing the fraction of the element
beyond the boundary. Similar energy terms for text and
important regions are defined.

Unity. Contrast is a common design principle that is often
used to differentiate and emphasize certain elements [35],
[37]. Conversely, decreasing contrast between elements
increases their unity, and can visually group elements.

We model element unity by allowing users to group el-
ements with scalar group IDs provided as meta-data. The
model encourages group members to have a similar size and
perceived importance. Energy terms measure the average
variance of sizes or importance values for all groups.
We also enforce a position constraint that group members
should be close.

Previous Layout. When improving or retargeting designs,
the model uses a previous layout of the same elements.
We often wish to preserve properties of the original design
such as the sizes of elements. Given a previous design, the
model penalizes the deviation of several element properties
including the absolute and relative heights, locations, and
importance values. The model also compares two global

properties of the designs: the overlap of text on graphics
and how much elements extend beyond the boundaries.

7 OPTIMIZATION

The energy function is extremely multi-modal, and the vari-
ables are highly coupled because of alignment constraints.
To optimize this difficult problem, we follow previous work
in layout optimization and use simulated annealing [14],
[16]. The optimization takes an initial layout where el-
ements are placed along the left boundary and proposes
changes to the elements’ positions and scales. Proposed
changes resulting in lower energy are always accepted.
Early in the optimization, there is a greater probability of
accepting layouts with higher energy, allowing escape from
local minima. As the optimization progresses, the algorithm
is less likely to accept higher-energy layouts. See Appendix
§D for details of the proposal distribution.

Optimization takes approximately 40 minutes on a Mac-
Book Pro (Intel Xeon 2.6 Ghz). The optimizer runs for
30,000 iterations, using a linearly-decreasing annealing
schedule. The highly multi-modal nature of the problem
often results in the optimizer finding different local minima.
This can be useful for sampling layout suggestions for a
designer however (e.g., [15]), as the local minima are often
visually different. For each result in this paper, we ran 8
optimizations in parallel and selected the minimum.

8 LEARNING MODEL PARAMETERS

The parameter vector θ that defines a layout energy includes
122 parameters. Manually setting this large number of
parameters is prohibitively time-consuming. We use Non-
linear Inverse Optimization (NIO) [1], [18] which learns
non-linear model parameters θ based on one or more
examples. NIO is an instance of structured learning [39],
though unlike most structured learning methods, NIO works
for non-linear parameters and continuous outputs. Given an
example layout XT , we assume it is optimal according to
an unknown parameter vector θ. In order to estimate θ,
NIO iteratively reduces the difference in energy between
the example layout XT and the optimal layout for the
current θ, which is found using optimization. These learned
parameters are then applied to other designs to produce
a similar style. We also make a few small changes to
the algorithm to improve performance, including using
the previous optimal layout as the next iteration’s starting
point. We include a detailed explanation and pseudocode
in Appendix §E.

9 APPLICATIONS

We demonstrate our model with three applications. Sep-
arate parameters are learned for each application using
NIO and a small number of examples, as the energies of
each application differ significantly. For learning styles,
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(a) (b) (c)

Fig. 7: Learning Design Styles. Parameters are learned from the top two examples of each column and used to generate
layouts for other designs. (a) a simple symmetric style, (b) two columns with center-aligned elements (c) a large center
graphic with smaller text surrounding.

there is no previous layout and the system attempts to
match a particular style. Both retargeting and improvement
measure the difference from a previous layout, but the
energy is different. For example, when retargeting it is
more important to match the previous layout’s perceived
element importance. See the Appendix for the training
data. For all applications, we include more examples in

the supplementary materials.

Design Synthesis. The most basic goal of the system is to
generate design layouts in a variety of styles. Fig. 8 shows
examples of synthesized layouts. Based on two example
layouts, the system learns the style parameters with NIO
and then generates other layouts in the same style. Learning
using a single layout is possible, but, because of the model
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Fig. 8: Layouts generated in a variety of styles. Parameters are learned from example layouts (see supplementary materials)

complexity, we found using two similar layouts reduced
over-fitting and produced better results.

In Fig. 7 we demonstrate our approach with three
landscape-ratio styles: a simple symmetric style, a two
column center-aligned style, and a style with a large center
graphic with surrounding smaller text. Our results show that
the model is able to learn style parameters and reproduce
the style on new design problems.

Design Retargeting. The system can retarget designs to
new sizes. Retargeting is an important task for designers
as designs are now often viewed in a variety of sizes and
aspect ratios. In our tests, we primarily focus on retargeting
between landscape and portrait sizes, but our approach
works for arbitrary sizes (Fig. 9). Model parameters were
learned from 12 pairs of designs in two different aspect
ratios (landscape and portrait). For each design in the pair,
the alternate design was used in the previous layout energy
terms of Sec. 6, giving 24 examples total. Retargets on new
designs were generated using these learned parameters.

To evaluate our algorithm, we hired a professional graphic
designer who was experienced in resizing posters and other
print materials to different dimensions. The designer was
provided 98 original designs and created layouts in a
new size (from portrait to landscape or vice-versa) which
matched the original design’s style while also being aesthet-
ically pleasing. The designer faced the same constraints as
our system, and could only translate and scale elements.
In Fig. 10 we show several retargeting examples. We then
compared our automatic retargets using AB comparisons
on Mechanical Turk (MTurk). 45 users were paid 5¢ to
compare 10 designs based on aesthetics and similarity to
the original design. Duplicates were added in each task and
inconsistent workers removed.

To evaluate how well our algorithm compares to novice
users, we performed a crowdsourced version of the same
study using MTurk. Users were paid 5¢ per retarget, and
took a median of 2.5 minutes per design, similar to the

Fig. 9: Design Retargeting. Given a design (top left), the
system can retarget to a variety of sizes and aspect ratios.

2.4 minutes for the professional designer. Because of the
subjectivity of the task, to encourage higher quality results,
users were also informed that designs would be evaluated
by other workers and bonuses would be given. In a second
study, users were shown 9 MTurk retargets and our auto-
matic retarget in random order, and ranked the retargets
from best to worst. Workers were paid 5¢ per evaluation.
25 workers were used, with the most inconsistent of those
users removed. The top 20% of designs received 15¢; the
top 10% of rankings (measured by distance to the mean
ranking) received 25¢. Fig. 11 shows an example of the
top 5 retargets with their average rankings.

Fig. 10 shows a comparison of automatic and human
retargeting. Figs. 10(a) and (b) show more complicated
designs where our automatic retargets are similar to hu-
man retargeting. In Fig. 10(c) the automatic retarget has
produced a reasonable layout, though fairly different than
human retargets.
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(a) (b) (c)

Example

Designer

MTurk

Ours

Fig. 10: Portrait-to-Landscape Retargeting. We show retargeting results from an example layout by a professional
designer, the best crowdsourced retarget (out of 9), and our automatic retarget.

Input MTurk Automatic MTurk MTurk MTurk

µ = 2.7, σ = 1.6 µ = 3.3, σ = 2.6 µ = 4.1, σ = 2.3 µ = 4.8, σ = 2.9 µ = 5.4, σ = 2.6

Fig. 11: Retarget Ordering. The portrait retargets were manually created by MTurk users in one task, and ranked in a
second task. The mean/std dev of all rankings are reported, with the designs sorted by mean rank.
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The mean preference of our automatic retargets compared
to designer retargets, after removing any layouts used as
training data, was 0.39 (see Fig. 12). However, analyzing
the individual AB tests using the binomial test show that
many failed to show a statistically significant preference
for the designer retargets, suggesting the algorithm often
retargets reasonably. To compare with novice MTurk retar-
gets, we performed the ordering test described earlier. Our
retargets achieved an average rank of 4.61 (std. err of 0.29) .
Fig. 12 shows a histogram of the rankings for our automatic
retargets after sorting by the mean rank. While our approach
cannot consistently beat the best human retargets, we do
perform better than the average MTurk user. We use a
one-sample Student-t test to evaluate if the mean of all
automatic retarget rankings is less than 5.5, the mid-point
between rank 1 and 10 (p < 0.05). As further support for
our model, in the Appendix we show statistically significant
correlations between many energy terms and the ranking
scores.

Considering the problem’s difficulty and lack of previous
automatic algorithms, merely replicating novice human
ability is significant. Furthermore, while users usually pre-
fer designer retargets to ours, they often make no distinction
between the two, indicating that our automatic retargeting
is often doing as well as a professional.

Design Improvement. The system can take an existing
layout and improve it to better match principles of graphic
design. Parameters are learned using 12 examples of an
original and improved design. Given a new design, the
learned parameters are used to optimize a new improved
version. Fig. 14 shows the results of our approach improv-
ing a variety of designs, from very poor initial layouts
which are changed significantly, to good initial layouts
which are only changed slightly. For example, Fig. 14(a)
is improved by grouping and aligning the text elements.
Fig. 14(d) is improved by increasing the graphic size while
aligning the elements. Fig. 14(b) and (e) are changed more
significantly, by changing the placement of elements to
improve the read order, as well as improving alignment,
and symmetry. The right columns gives some failure cases
of our algorithm. In Fig. 14(c) the symmetry of the text in
the original is lost, producing a worse design. In Fig. 14(f),
the new design is significantly worse due to a poor grouping
of elements in the top, resulting in smaller text and a more
confusing read order.

To evaluate our improvement approach, we performed
another MTurk study. The manually created and ordered
designs from the retargeting task were divided into three
groups: the best rated designs, the worst rated designs, and
all designs. Out of the 9 human retargets, the top 2, bottom
2, and 2 random designs were each chosen, giving 196
designs per set. These designs were then optimized with
the learned improvement parameters. Finally, 45 MTurk
users selected their preferred design in an AB comparison,
with a randomized left/right position for the improved
design. Users were paid 5¢ to compare 10 designs based on
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Fig. 12: Automatic Retarget Evaluation. Top Left: mean
preference of AB comparisons between automatic and
designer retargets. Top Right: histogram of tests which
had a statistically significant preference for either retarget.
Bottom: histogram of rankings for automatic retargets
compared to novice MTurk users (1 is the best rank).
Our automatic retargets cannot beat designer retargets,
though often perform comparably, and are often highly
rated compared to novice human retargets.

aesthetics and clarity. Duplicates were added in each task
and inconsistent workers removed.

Fig. 13 shows the overall preference for the original de-
signs compared to the improved versions. We also show a
histogram of the tests which had a statistically significant
preference for the original or improved (using the binomial
test with p < 0.05), or where there was no statistical differ-
ence. Our approach often improves the worst designs while
matching the best designs. For the overall set of designs,
our approach often improves the design or produces no
difference; only rarely does the algorithm produce a worse
design. These results show that the system successfully
models basic principles of graphic design, and can generate
appealing layouts.

10 CONCLUSIONS

Automatic tools for understanding and creating graphic
designs are important for both professional and novice
designers. Design is an extremely difficult task, and the
vast number of devices and viewing conditions for designs
have increased the burden on designers significantly. How-
ever, many books on graphic design principles are vague
and difficult to build tools from directly. By contrast, we
model design principles explicitly, synthesize layouts using
optimization, and directly evaluate modeling choices with
user studies. This general approach allows a deeper under-
standing of graphic design principles, and will hopefully
lead to tools for aiding novice and expert designers.
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Fig. 13: Design Improvement Evaluation. We show im-
provement results for the worst, best, and all user designs.
Left: the overall mean preference for the original or the
improved version (2 std err). Right: histogram of tests
which had a statistically significant preference for either
original or improved version.

There are currently several limitations with our approach.
Though complex, our model barely scratches the surface
of possible graphic design layout styles. The model only
optimizes element position and scale, and ignores rotations,
font types, text line breaks, and optional elements. Other
possible extensions include modeling of element read-order
and more complex constraints as in article layouts.

Our optimization and learning procedure are currently too
slow for real-time interaction. Predicting element impor-
tance is currently an expensive operation; investigating
simpler models of importance is potential future work.
Our model also performs expensive image-based operations
like compositing; a vector-based representation could be
significantly faster. While we run multiple optimization in
parallel, our approach is not intrinsically parallelizable due
to the simulated annealing algorithm. However, parallel
tempering has been used to parallelize layout synthesis
on the GPU [15]. To address these limitations, we have
begun development of a GPU-based model which greatly
improves efficiency and allows our approach to be extended
to interactive design applications.
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