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1 Introduction

1.1 Role of these course notes

These notes explain in detail material that do not appear in the original paper [3]. Therefore, even if the reader will
find some overlap with the paper, it is fundamental to read the original paper [3] to understand the following notes.

1.2 Overview of the problem

Since its origin, Computer Graphics has aimed to simulate an illusion of reality. Rendering algorithms have been de-
veloped specifically to generate near-perfect images under realistic illumination conditions. It is often difficult to say
if such images are realistic or not because there is no real reference such as a photograph. Moreover, the application
may need to create novel viewpoints and/or novel illumination conditions from a sparse set of photographs. This is
difficult to achieve without using image-based modeling and rendering algorithms. For example, suppose we want to
insert a new synthetic object on top of a real anisotropic mirror inside a real scene. This operation clearly needs to take
into account the interaction between the new object and its environment (especially this mirror). This is impossible
to do, if we do not have an approximation of the reflectance properties of the real surfaces in the image. Therefore
specific algorithms are necessary to recover these reflectance properties from the real images.

Many authors have contributed to the resolution of this problem [13, 16, 24, 23, 25, 17, 18, 28, 7, 29, 14, 15, 22,
21, 10, 9, 20]. The algorithms that they have produced vary greatly and not all can be re-used for our applications.
Considerable work has been done for the reflectance estimation of an isolated object in particular illumination condi-
tions [13, 16, 24, 23, 25, 17, 18] . Although these techniques often bring very detailed reflectance information (i.e.
a full BRDF in some cases), their goal is more to replace the use of an expensive gonioreflectometer rather than to
be able to change the viewpoint and/or the illumination. Recently, several methods have been developed to take into
account the interaction between objects inside a real scene, from a sparse set of photographs [7, 29, 14, 15]. Fournier
[10] proposed a different approach but with the use of a single image. However, his technique was limited to perfect
diffuse environments and was not able to take into account specular surfaces. Our method has the similar ambition
to recover an approximation of the BRDF of the surfaces from a single image, including the processing of specular,
isotropic or anisotropic surfaces. This is extremely difficult to achieve because it is not possible to compute a full
BRDF correctly without having several images, except for trivial cases
We propose a hierarchical and iterative technique that computes the best possible approximation of a real image, using
the error computed between the rerendered image and the real one. Each of the new images is generated by making
more and more complex assumptions about the reflectance properties of the real surfaces. It is rendered by a global
illumination software that takes into account these reflectance changes. The main advantages of our approach are:
it does not need any special device to capture the real image (a classical camera is enough), and it estimates the re-
flectances of all types of surfaces (including anisotropic mirrors) from a single image without any particular constraint
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for the viewpoint position, the light sources1 or the orientation of the objects . The goal of our method is to recover an
approximation of the BRDF of the surfaces, and to compute the best synthetic image preserving the real properties of
the scene (a real mirror has to be simulated as a specular surface and not as a textured surface for example).

2 Background and Related Work

All the techniques and ideas in this paper have been made possible by works about photorealistic rendering including
global illumination and ray tracing, image-based modeling and BRDF modeling. However, the most relevant domains
deal with inverse rendering, image-based renderingand reflectance recovery. We can split thereflectance recovery
algorithms into three groups: direct measure of reflectances on the object using a specific device [26, 12, 1, 6], the
extraction of reflectances from a set of images [13, 16, 24, 23, 25, 17, 18, 28, 7, 29, 14, 15], and the extraction
of reflectances from a single image [22, 21, 10, 9, 20]. The last two parts may be subdivided into two categories,
depending on whether the method takes into account energetic interreflections (using a global illumination algorithm
for example) or not. A complete overview of these techniques can be found in our paper [3]. We only include here
related techniques that use a single image and global illumination for reflectance recovery.

A pioneering work in reflectance recovery from a single image and using global illumination was completed by
Fournier et al. [10] in 1993. He proposed to rerender an original image using a 3D representation of the scene
(including the positions of the light source and the camera parameters) and a single image of this scene. All the surfaces
are considered as perfect diffuse, and they used their reprojection on the real image to estimate their reflectances. A
radiosity-based algorithm then computes an image applying these reflectances to a progressive radiosity technique [5]
to obtain a new synthetic image.

An extension of the previous method was developed by Drettakis et al. [9]. They proposed an interactive version
of the initial paper and added a vision algorithm for the camera calibration and the automatic positioning of the 3D
geometrical model. They described a slightly different technique for the estimation of the reflectances of the surfaces
and they used a hierarchical radiosity algorithm [11] to compute a new synthetic image close to the real one.

An approach similar to Fournier et al.’s was chosen by Gagalowicz [20]. It included a feedback that compares the
real image to the synthetic one. He described a technique to generate a new synthetic image from a single one (except
the 3D geometrical model built from two stereo images) using an iterative method that minimizes the error between
the real image and the synthetic one. However, this technique is limited to a pure Lambertian approximation of the
surface reflectances.

3 Elements of Reflectance Recovery

3.1 The Notion of Group

In our paper [3], we describe a new concept that we calledgroupsto solve the problem of not directly seen objects.
When we only have one single image, it is very common that several objects are not directly visible in the image
from the original viewpoint, or their projection area is too small to be usable for reflectance analysis. It is then almost
impossible to compute their reflectance because no information is available in the image. Therefore, every object in
the scene is described as a part of agroupof objects. In this group, at least one object is directly visible in the image
and it is assumed to exactly have the same reflectance as the other objects of its group. So, when the reflectance for
this object (and/or all other directly seen objects) has been computed, it is propagated to all other objects of the same
group.

3.2 Reflectance Model and Data Description

In this technique, we used the Ward’s BRDF model [26] for several reasons. First of all, it is a very simple model, and
it gives you the opportunity to generate anisotropic surfaces. Secondly, is has been validated on real materials using
an experimental device to compute the parameters used in this model. However, it is possible to use any other BRDF
model if you can determine a hierarchy of BRDFs for the implementation: the hierarchy should be built following the

1In fact, the emittances of the light sources are supposed to be known. However, if it is not the case then there is a method that can recover them
automatically as proposed by Fournier et al. [10].
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number and the complexity of the parameters used in the model. For example, if you look at the Ward’s BRDF model
and then at our hierarchy, you see that the hierarchy has been built following theses rules (perfectly diffuse:natural
case with one parameter, perfectly specular: simplest case with one parameter, non-perfectly specular: enhanced spec-
ular case with one iteratively computed parameter, ..., isotropic: three parameters, ...).

A 3D geometrical model isindispensableto our technique. It does not matter how this 3D model has been ob-
tained, but its projection on the image must match the scene, and the data must be usable by your rendering algorithm2.
Some proposals to obtain such models are given in [8] for example. The technique that we used is described in the
paper.

3.3 Accuracy of the geometrical model and extraction of the pixel intensities

Since we have the geometrical model, the camera parameters and the original image, we are able to computeindex
buffersusing a famous technique calledoffscreen rendering[19]. The index buffers produce a new image that gives
the number of the group for every pixel it belongs to. So, when we compute the reflectance we just traverse the index
buffer and the original image to sum these pixel intensities3 The precision required by the inverse algorithm for the
positioning of the geometrical model tolerates several pixels of difference between the projection of the model and the
real objects in the image. The acceptable number of misclassified pixels depends on the size of the projected object in
the original image. For example, if the projection of all objects belonging to the same group has a total number of ten
visible pixels, then the inverse algorithm will compute the wrong BRDF when at least about three or four of the ten
pixels do not belong to the currently analyzed objects. We use very classical filtering methods, such as edge detectors,
edge removal filters and a planar approximation, to reduce inconsistencies with the geometrical model by minimizing
the number of pixels assigned to a wrong object.

4 Inverse Rendering from a Single Image

4.1 Overview of the Algorithm

Here, we want to remind you of the main characteristic of our inverse rendering algorithm. The following paragraph
is a part of our SIGGRAPH 2001 paper.

The core of our technique is incremental and hierarchical (see figure 1). It is incremental because the surface
reflectances are going to evolve to their optimum value. It is hierarchical because the general algorithm forces the
surfaces BRDF to be more and more complex if the error between the real and the synthetic image does not decrease
for these surfaces. This algorithm is iterative and will proceed to successive corrections of the surface reflectances by
minimizing the error between the real and the synthetic image. Indeed, each computed error for a group of objects
having the same photometric properties drives the correction of their reflectance. Our technique successively applies
the selected assumption on the group reflectances until the error becomes smaller than a user-defined threshold. The
notion of threshold and how to fix its value is discussed in [3, 2]

We start the algorithm with theperfect diffusecase without considering texture (the diffuse reflectance of a group is
computed by averaging the radiances covered by its projection in the real image). All the surfaces are then considered
as perfectly Lambertian, and the rendering software (Phoenixin this case4) computes a new approximation of the
image. If the difference between the real and the synthetic image for a group is greater than a fixed threshold on all
the group projection, then the reflectance of this group is considered asperfectly specularfor the next rerendering
iteration. If, afterPhoenixhas recomputed a new image using the new assumption, the error for this group remains
big, then its reflectance is simulated asnon-perfectly specular. We apply the same principle again to change the group
reflectance to adiffuse and specularone. Until then, all the surfaces were considered with no roughness term (only
a ρd and aρs were estimated). In the next assumption, if the difference between the two images still produces big

2Remember that you must have a rendering software to produce a photorealistic image. This image is supposed to be compared to the original
one. So, the choice of the technique iscritical to our inverse rendering algorithm because on one hand it must provide aphotorealistic image, and
on the other hand this image must be computed on areasonably short time(less than a few minutes).

3In fact, the pixel intensities are first converted into radiances. See [3, 2] to understand why and how.
4It is possible to use any other global illumination rendering software, such asRadiancefor example.
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Figure 1:General iterative and hierarchical algorithm for reflectance recovery. Each surface of the scene is analyzed separately, depending on the
assumption about its reflectance (perfectly diffuse, perfectly specular, etc.). If the assumption is false (the error between the real and the synthetic
image is large), then the surface reflectance is assumed to be more complex (hierarchical principle). If the assumption is correct then the surface
reflectance is modified accordingly in order to minimize the error between the two images (iterative principle). During each global rerendering
iteration, the reflectances of all surfaces are then continuously updated, to take into account the incident energy coming from any surface for which
the BRDF has changed (a diffuse surface which becameperfectly specularfor example).
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errors, they are considered as isotropic and a roughness factor (α) has to be evaluated. This assumption is extended
to anisotropic properties if the user-defined threshold for the error has not been reached. If all assumptions have
failed, the group is supposed to be highly textured. Since only a single image is available, it is extremely difficult and
sometimes impossible to create a combination between this texture and other reflectance properties (a glossy textured
surface for example). This situation is discussed in paragraph 5.2.

5 Implementation details

We present here details regarding particular cases and implementation issues.

5.1 The problem of multiple specular reflections

This is a very common problem in our technique and no details have been given in our paper on the method to solve
it. Let us consider the following case: given a real image containing two non-perfect mirrors (A andB) facing each
other. So, in the view ofA in the original image,B is seen through the specular reflection and vice-versa. When our
algorithm attempts to compute the BRDF ofA, it is biased by the BRDF ofB and vice-versa. You could think that
this is not a very common case, but it is. Due to the hierarchical principle of our technique, this case is very common.
Indeed, every time that the algorithm needs to go further than the perfectly specular case, it tries the non-perfectly
specular case. So when you have two textured books facing each other, they will be considered as non-perfectly
specular at the same time in the hierarchy. Another problem is the case where a textured book (A) has a part reflecting
in a specular object (B). In this case, when the hierarchical algorithm decide that both of them are being assumed as
specular surfaces, the problem is that the part ofA reflecting inB prevents our algorithm of finding the properties of
B: all the pixels of the projection ofA reflecting inB bias the reflectance computation ofB.
Of course, our algorithm takes into account all these cases by doing a simple processing. When the algorithm detects a
surface as specular (let us call it nowA), it first analyzes the content of the indirectly seen object (let say for simplicity
purposes that there is only one object seen through the mirror, and let us call itB). We compute an index buffer of
the objects seen through the mirror. For each of these objects, we look if their reflectance is being analyzed or if it
has already beenconfirmed(see figure 1). If it has already been confirmed, there is no problem and its reflectance
will not bias the specular surface. If it is being analyzed then our algorithm proceeds as follows: the object (B) seen
through the specular surface is considered as textured. We directly extract its texture from the image regardless of its
properties, and no illumination is taken into account for the next rendering step on thispseudo-texturedobject. Now,
when the algorithm looks at the properties of the mirror (A), the part of the object (B) seen through the mirror can not
bias the reflectance of the mirror because it is considered as a texture. The inverse rendering algorithm then computes
the properties of the specular surface (A). The error between the real and the synthetic image determine if the specular
assumption is true or not and this error is stored for later use. Then, the algorithm tries the opposite assumption:A is
considered as textured andB is a specular object. A new error between the real and the synthetic image is computed
and it is stored for later use. Finally, using thepreviously stored specular propertiesof A andB, the rendering
algorithm computes a new synthetic image assuming that bothA andB are specular objects. A new error is computed
between the real and the synthetic image. The inverse rendering algorithm then compares the three computed errors
and chooses the hypothesis which has the smallest one. However, if this error concerns a case where an object has
been assumed textured, thenonly the specular objecthas its properties confirmed. The object assumed textured is
still being furthermore investigated to compute its real properties (it could be an isotropic one for example).

5.2 Textured surfaces

When the simulation of a surface as anisotropic still produces big errors in the difference image, we proceed to texture
extraction.

Extracting the texture from the real image is an easy task that can be realized using the technique proposed in
[27] for example (see figure 2). However, we have to extract this texture while taking into account the fact that it
already has received the energy from the light sources, and that the pixels covered by its projection in the real image
contain this information. Otherwise, if we send the energy of the light sources to these textures again, they will be
over-illuminated. Therefore, we introduce here a notion calledradiosity texturethat balances the extracted texture with
an intermediate texture in order to minimize the error between the real and the synthetic image. As for the perfectly
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diffuse reflectance case, this intermediate texture is computed by an iterative method (see algorithms 1 and 2). All
fully detailed algorithms can be found in [2].

Figure 2:Extracting and Unwarping Textures

Figure 3: Computation of the diffuse reflectances for a texture in a real image. Here, the subdivision level has been voluntarily increased for
clarity purposes.

At the first iteration, the texture used to rerender the image is the texture directly extracted from the real image.
At the second iteration, the texture used to obtain the resulting synthetic image is multiplied by the ratio between
the newly extracted texture of this synthetic image and the texture of the real image (see algorithm 2). This iterative
process stops when the user-defined threshold for textured surfaces has been reached. The textures of the poster and
the books in the rerendered images of section 6.2 have been obtained using this technique. The problem of this method
is that it computes a texture including the shadows, the specular reflections and the highlights. Typically, suppose that
we have a marbled floor on which a sphere is reflected. The texture of this floor in the real image then includes the
marble characteristics, its reflectance properties and the sphere reflection including its own reflectance properties. How
does one extract the marble characteristics only and independently of the rest of the scene ? This is an extremely hard
problem, and according to Y.Sato et al. [25] no algorithm has been proposed yet to solve it using a single image.

6 Results

6.1 Experimental Validation on a synthetic scene

In this section, we present the values obtained for the recovered BRDF of a computer-generated scene (see left image
of Figure 5). We compare them to the original known values used to render the original image withPhoenix[3, 2].

The first level of the hierarchy in the inverse rendering process computes all the parameters of the surfaces in a
straightforward manner. However, the error remains large for the floor and the next levels are tested for this object.
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Algorithm 1 Function replacing the anisotropic properties by the texture properties
Function ChangeAnisotropicGroupBy Texture(group)
// Is the error for the group bigger than a user-defined threshold ?
if group.ε ≥ anisotropic thresholdthen

group.type= texture;
// The surface is now considered as a textured surface. We extract the object textures
// and we unwarp them to make them usable by the following function.
for all objectsj do

ComputeTexture(group.object[j], real img);
end for

end if

Algorithm 2 Pseudo-Algorithm for the computation and the iterative correction of texture reflectances
Function ComputeTexture(object, realimg)
The patch reflectances are computed using the warped original texture
otherwise the unwarped texture could bias the computation ofρd

object−>texture= texture extracted from real image using index buffer;
for all patchsk do

Compute the average diffuse reflectance of patch k (see figure 3) using offscreen-rendering
end for
// Texture unwarping for final rendering
Compute vertex coordinates for all object facets projected on the image;
Unwarp object−>texture using previous coordinates to generate a rectangular image (see figure 2);

Function Modify Texture(object, realimg, synimg)
// Computation of the error image
tmp texture = texture extracted from the the synthetic image;

textureε =
texture(object,realimg)

tmp texture
;

// Compute new texture
new texture= object−> texture× textureε;
// Computation of patch reflectances for the radiosity equation (see [4] for more details)
for all patchsk projecting on newtextdo

Computeρdk
as the average of the pixel intensities

covered by the projection ofk;
end for
// Unwarping of the new texture for the next rendering
Compute vertex coordinates for all object facets projected on the image;
Unwarp newtexture using previous coordinates to generate a rectangular image (see figure 2);
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Figure 4:From left to right: original anisotropic floor, floor simulated as an isotropic object, and the error image between the original and the rerendered images.

Figure 5:Left: the original computer-generated image. Right: the new synthetic image produced by our inverse rendering technique.

The specular assumptions (perfectly specular, non-perfectly specular, both diffuse and specular) produced large errors
forcing the algorithm to choose the isotropy hypothesis. During the isotropy case, a global minimum has been found
for ρd, ρs andα, and the synthetic image is visually very close to the original as shown by Figure 4. However, as we
only set1% for the maximum tolerated error to switch from the isotropy hypothesis to the anisotropy, our method tries
to simulate the floor as an anisotropic object.

Surface Parameter Real value Computed value Comment
Left wall ρd (0.66, 0.66, 0.66) (0.65916, 0.66075, 0.66037)

ρs (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
Right wall ρd (0.69, 0, 0.95) (0.69002, 0.0, 0.95901)

ρs (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
Back wall ρd (0.65, 0.65, 0.0) (0.64997, 0.65067,4 · 10−7)

ρs (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
Ceiling ρd (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) See footnote5.

ρs (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
Big block ρd (0.77, 0.0, 0.0) (0.77002,2 · 10−4, 3 · 10−6)

ρs (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
Small block ρd (0.0, 0.76, 0.26) (0.0, 0.75802, 0.25912)

ρs (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
Floor ρd (0.1, 0.1, 0.1) (0.10013, 0.10045, 0.09981)

ρs (0.9, 0.9, 0.9) (0.89909, 0.90102, 0.89903)
θ 0.0o 2.8o The total error for
αx 0.07 0.06999 θ is 0.77%.
αy 0.11 0.1101

Figure 6:Comparison between the recovered reflectance parameters and their original values.

5The ceiling is not directly visible in the original image. When this happens, the algorithm considered this object as a perfect diffuse white
object. In practice, if such a case happens, the user should find an object whose photometric properties are close to the ceiling. The ceiling will then
be declared in the same group as this object.
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6.2 Inverse Rendering

All the following synthetic images have been generated usingPhoenixas rendering and inverse rendering software.
The first synthetic image at the top right of figure 8 has been generated in 37 minutes using the hierarchical algorithm,
from the left real photograph. Two specular surfaces have been recovered and simulated as non-perfect mirrors.
Neither isotropic nor anisotropic hypotheses have been done thanks to the optimization technique described in our
paper [3], and 14 rerendering iterations were necessary to generate the final image.

The inverse algorithm took 4 hours and 40 minutes to produce the image at the bottom right of figure 8. Roughly 4
hours of this time were necessary to recover the anisotropic BRDF of the aluminum surface. The final rendering stage
took 32 minutes to render the final image (100 bounced rays have been used for the anisotropic surface).

Figure 7:Example of a pure diffuse approximation of a whole 3D scene. From left to right: the original image captured with a camera, the synthetic image and a
synthetic image generated under a new viewpoint. The perfectly diffuse assumption is realistic enough for many surfaces, except the computer monitor and the door.
Moreover, even if the desk is a real anisotropic surface, a pure diffuse approximation produces a realistic enough result for this object. Note that a book on the left
bookshelf has not been modeled. Due to the filtering step and the principle of the method, this does not disturb the inverse rendering case. However, this remains true
only for small objects that do not interact much with the real environment. A “very“ large error in the modeling step would definitely produce wrong results.

Figure 8:Two different examples of synthetic images (right) rerendered from a single real image (left). We remark that the perfectly diffuse assumption is realistic
enough for many surfaces (including the walls, the floor, the desk, etc.).
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Figure 9:Some examples of rerendered scenes (right column) including perfectly diffuse and specular surfaces compared to the original image (left column)
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7 Augmented Reality Applications

The images of figure 10 show examples of applications in augmented reality. Some synthetic objects have been
added such as a small robot and a luxo-like desk lamp. It is also possible to modify the reflectances easily too. New
viewpoints can be generated and new illumination conditions can be created as well.

Figure 10:Examples of several augmented reality applications. All these new images were rendered using our global illumination softwarePhoenix, which first
recovered the surface reflectances from the bottom left image of figure 8. The top left image shows the original scene removing some objects (the feet of the desk and
the red cube). Note that the right mirror has taken into account the modification. The right top image shows the original scene rendered under a novel viewpoint. The
bottom left image shows the scene with modified photometric properties, and the addition of an object (a small robot). The bottom right image presents the scene under
novel illumination conditions with the addition and deletion of objects.

8 Conclusion and Future Work

In this course, we have presented a new technique that determine an approximation of the reflectance properties of the
surfaces of a 3D scene [3, 2]. An incremental and hierarchical algorithm iteratively estimates the diffuse, specular,
isotropic and anisotropic reflectance parameters. In a final step, the textured surfaces are considered as a special
case of reflectances to be simulated. The method takes as input a single photograph of the scene taken under known
illumination conditions as well as a 3D geometric model of the scene. The result is a complete description of the
photometric properties of the scene which may be used to produce a photorealistic synthetic image very similar to the
real one. We showed that the method is robust and allows for the visualization the original scene from any new angle,
with any illumination conditions and with the addition, removal and modification of objects.

Our work has currently some limitations, especially regarding textured surfaces. Until now, we are not able to
discriminate the shadows or highlights from an assumed textured surface. In this regard, it will be interesting to extend
our method to these cases, although we think that this is a very difficult problem, if one sticks to the single image
assumption.

While many challenges remain, we believe that algorithms for recovering an approximation of the reflectances
inside a real scene are an important direction of research for both the Computer Vision and the Computer Graphics
communities. In Computer Vision, it could be possible for example to use our method to enhance the positioning of
mirrors using a minimization algorithm between the real and the synthetic image. Regarding Computer Graphics, we
may extend the reflectance recovery algorithm to objects that have more complex photometric properties such as light
beam, small fires, caustics, etc. The hierarchical property of our technique offers many possible extensions.
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