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Abstract
In this paper, we present a new method to recover an ap-
proximation of the bidirectional reflectance distribution func-
tion (BRDF) of the surfaces present in a real or synthetic
scene. This is done from a single photograph and a 3D ge-
ometric model of the scene. The result is a full model of
the reflectance properties of all surfaces, which can be ren-
dered under novel illumination conditions with, for exam-
ple, viewpoint modification and the addition of new syn-
thetic objects. Our technique produces a reflectance model
using a small number of parameters. These parameters
nevertheless approximate the BRDF and allow the recov-
ery of the photometric properties of diffuse, specular, iso-
tropic or anisotropic textured objects. The input data are
a geometric model of the scene including the light source
positions and the camera properties, and a single captured
image. We present several synthetic images that are com-
pared to the original ones, and some possible applications
in augmented reality such as novel lighting conditions and
addition of synthetic objects.

1. Introduction and Motivations

Research in Computer Graphics has been more and more
developed over the past few years. This domain has given
the opportunity to produce photorealistic images using phys-
ical or empirical techniques. Even if the resulting images
were often spectacular, full realism is underachieved when
comparing the computer-generated images with real im-
ages captured with a camera. A new field called Image-
Based Rendering enhances the quality of image synthe-
sis, by directly using the real images to create synthetic
ones. A subfield known as Inverse Rendering aims to es-
timate object reflectances (BRDF) inside a real scene. Us-
ing this photometric reconstruction, it is possible to cre-
ate new synthetic images under novel illumination condi-
tions. Moreover, almost all the techniques in inverse ren-
dering use a 3D geometrical model and in some cases the
positions and the intensities of the light sources. Conse-
quently many augmented reality applications become ap-
pliable. We can add or remove some objects, and then
compute the new interactions between the assembled ob-
jects of the scenes. Many authors have contributed to the
resolution of the inverse rendering problem [14, 17, 25,
24, 26, 18, 19, 27, 6, 32, 15, 16, 23, 22, 11, 10, 21]. These
works can be divided into several different categories, de-
pending on the complexity of the scene: one isolated ob-
ject or a full 3D scene, and the complexity of the illumina-
tion: local or global. A lot of work has been accomplished

in the determination of the BRDF for an isolated object
under specific illumination conditions [14, 17, 25, 24, 26,
18, 19], or under general unknown illumination conditions
[20]. Some of these techniques are able to produce the
exact BRDF from a set images and they generally use a
tailored approach to achieve this goal. Moreover, the em-
phasis of these past works are on the elimination of the
costly measures incurred by the use of a gonioreflectome-
ter, rather the creation of new synthetic images. Recently,
several other methods have been proposed to extend the
photometric reconstruction to augmented reality applica-
tions such as viewpoint moving and illumination changes
for example [6, 32, 15, 16]. These contributions generally
use a sparse set of photographs to estimate the full BRDF
of materials inside a real scene [6, 32, 15, 16]. This often
generates additional work for the user, especially if several
images have to be taken under specific viewpoints [32].
Fournier et al. [11] proposed another approach that esti-
mates only diffuse reflectances using a single image. We
extend this work by introducing a new hierarchical system
to estimate the full BRDF of objects from a single image,
following our previous works in the inverse rendering field
[21, 3, 1, 4]. This paper is a description of this work and
it includes a new experimental validation on a synthetic
scene comparing real and recovered parameters for differ-
ent BRDF.

2. Previous Work

All the techniques and ideas in this paper have been made
possible by works about photorealistic rendering including
global illumination and ray tracing, image-based model-
ing and BRDF modeling. However, this paper falls mainly
within the description of inverse rendering, image-based
rendering and reflectance recovery. We limit here the over-
view of the previous methods to the most relevant algo-
rithms to our technique. Therefore, the background de-
scribed here includes only techniques which take into ac-
count a full 3D scene and use global illumination. A com-
plete overview of all the existing algorithms is available in
[4, 2].

2.1. Reflectance Recovery from Several Images

Debevec [6] used global illumination for augmented real-
ity applications. To insert new objects inside a real im-
age, he needed to take into account interreflections and
computed the reflectances of the surfaces in the part of
the scene influenced by this insertion. He created a geo-



metrical 3D model of this part of the scene, called the lo-
cal scene, and manually calculated the reflectance param-
eters of all the modeled objects. Each of the non-diffuse
BRDF parameters are changed by the user iteratively until
the rerendered image becomes close enough to the original
one. The perfect diffuse parameters are set by an automatic
procedure.

Yu et al. [32] proposed a complete solution for the re-
covery of surface BRDF from a sparse set of images cap-
tured with a camera;

���
of the

�����
images were taken

specifically to get specular highlights on surfaces. They
built � � radiance maps for the estimation of the reflectance
parameters and the computation of the radiance-to-pixel
intensity conversion function (camera transfer function) [7].
Using an image-based modeling software such as Facade
[8], a 3D geometrical model of the scene was built from the
set of images. All the data were then utilized to recover the
BRDF of the modeled surfaces. Their method minimized
the error in the parameters of the Ward’s anisotropic BRDF
model [29] to estimate the best possible BRDF for each
object. This work was applied to the insertion of new ob-
jects in the scene, to the modification of the illumination
conditions and to the rendering of a new scene under novel
viewpoints. However, this method only works if at least
one specular highlight is visible on an object. Otherwise
this object is simulated as perfectly diffuse.

Loscos et al. [15] proposed a method based on an orig-
inal idea from Fournier et al. [11]. Their algorithm recov-
ered the diffuse reflectances of the surfaces inside a set of
photographs of a scene, taking into account the textures of
the objects; each surface has to be unshadowed in at least
one image of the set. They applied their technique to the
insertion/removal of objects and to the modification of the
lighting conditions of the original scene. More recently,
Loscos et al. [16] extended this technique by removing
the constraint of the unshadowed surfaces. To improve the
results, they transformed their reflectance recovery algo-
rithm into an iterative process. However, the method re-
mained limited to perfectly diffuse surfaces; the mirrors
are considered to be diffuse textured objects for example.

2.2. Reflectance Recovery from a Single Image

A pioneering work in this domain was completed by Fournier
et al. [11] in 1993. He proposed to rerender an original im-
age using a 3D representation of the scene, including the
positions of the light source and the camera parameters and
a single image of this scene. All the surfaces were consid-
ered to be perfectly diffuse, and they used their reprojec-
tion onto the real image to estimate their reflectances. A
radiosity-based algorithm then computed an image apply-
ing these reflectances to a progressive radiosity technique
[5] to obtain a new synthetic image.

An extension of the previous method was developed
by Drettakis et al. [10]. They proposed an interactive ver-
sion of the initial paper and added a vision algorithm for
the camera calibration and the automatic positioning of the
3D geometrical model. They described a slightly different
technique for the estimation of the reflectances of the sur-
faces and they used a hierarchical radiosity algorithm [13]
to compute a new synthetic image similar to the real one.

An approach similar to that of Fournier et al. was cho-

sen by Gagalowicz [21]. It included a feedback that com-
pares the real image to the synthetic one. He described a
technique to generate a new synthetic image from a single
image using an iterative method that minimizes the error
between the real image and the synthetic one. Note, how-
ever, that the 3D geometrical model obtained in the process
was built from two stereo images. This technique is lim-
ited to a pure lambertian approximation of the surface re-
flectances. An extension of this work has been realized by
Boivin et al. [4], who introduced a new technique taking
into account complex BRDFs of objects inside a real scene.
They proposed a hierarchical and iterative method which
minimizes the error between the real and the synthetic im-
age to estimate various types of BRDF, such as anisotropic
surfaces. They applied their work to augmented reality ap-
plications.

3. Data and Work Base

3.1. Two fundamental data

The method that we propose here requires two data. First
of all, we need a full three-dimensional geometrical model
of the scene including the intensities and the positions of
the light sources. The construction of the 3D model can be
achieved by many different ways including manual ones.
We used Maya (Alias �Wavefront) to manually position the
3D geometrical models of objects in the original image
and to approximately build the light sources. All the cam-
era parameters have been recovered using the Dementhon
and Davis [9] technique combined with a downhill simplex
minimization method [12]. However, many other tech-
niques can be used to obtain the camera parameters and the
3D geometrical model [8]. Moreover, in our algorithm, all
these reconstructed objects must be grouped by the type of
reflectance. This means that the user must declare inside a
group all the objects which are supposed to have the same
BRDF (for example perfectly diffuse or isotropic). This
is a very important heuristic, because the inverse render-
ing algorithm will now be able to compute or attribute re-
flectances to objects which are not directly seen in the orig-
inal image. This structuring of data also allows for some
augmented reality applications, such as viewpoint modi-
fication and object insertion for example. This grouping
operation is a very fast manual operation performed dur-
ing of after the modeling step. Finally, the second data that
we need is one single image of the real scene captured us-
ing any camera 1, without any constraint on the position of
the observer.

3.2. Accuracy of the geometrical model

The precision required by the inverse algorithm for the po-
sitioning of the geometrical model tolerates several pixels
of difference between the projection of the model and the
real objects in the image. The acceptable number of mis-
classified pixels depends on the size of the projected object
in the original image. For example, if the projection of all
objects belonging to the same group has a total number of
ten visible pixels , then the inverse algorithm will compute
the wrong BRDF when at least about three or four of the

1We used a 3xCCD Sony camera, DCR-VX1000E.



ten pixels do not belong to the currently analyzed objects.
We use very classical filtering methods, such as edge de-
tectors, edge removal filters and a planar approximation, to
reduce inconsistencies with the geometrical model by min-
imizing the number of pixels assigned to a wrong object.

4. Our inverse rendering algorithm

The inverse rendering algorithm can be described using
two concepts: an iterative one and a hierarchical one (see
Figure 1). When the algorithm starts, it considers all the
objects inside the scene as perfectly diffuse. The BRDFs
of all the objects are initialized to the average of the radi-
ances computed from the pixel intensities 2 covered by the
projection of the group in the original image.

4.1. Overview
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Figure 1: General iterative and hierarchical algorithm for reflectance recovery.
Each surface of the scene is analyzed separately, depending on the assumption about
its reflectance (perfectly diffuse, perfectly specular, etc.). If the assumption is false
(the error between the real and the synthetic image is big), then the surface re-
flectance is assumed to be more complex (hierarchical principle). If the assumption
is correct then the surface reflectance is modified accordingly in order to minimize
the error between the two images (iterative principle). During each global rerender-
ing iteration, the reflectances of all surfaces are then continuously updated, to take
into account the incident energy coming from any surface for which the BRDF has
changed (a diffuse surface modified to be perfectly specular for example).

Following this diffuse assumption, our algorithm compute
a new synthetic image using photo-realistic rendering tech-
niques 3. Our inverse method attempts to minimize the er-
ror between the real and the synthetic image in order to

2These radiances have been obtained using the inverse of the camera
transfer function that was simulated as a � correction function with a �
value of 2.2 according to Tumblin et al. [28]. However a more powerful
algorithm could be applied if we had more than one photograph of our
scene [7].

3We use our own rendering software called Phoenix [2] to compute
the new images, but any global illumination software such as Radiance
[30] can be used as well

obtain the best possible approximation for the BRDF. The
iterative step seeks the best parameters following a given
assumption about the BRDF. The hierarchical step changes
the hypothesis regarding the BRDF if the iterative step fails
to obtain a small error between the real and the synthetic
image.
Each time a new image has been generated, an image dif-
ference is then computed to determine which object BRDF
must be changed. If the perfectly diffuse assumption pro-
duces a big error between the two images for a given group,
then the inverse rendering algorithm chooses another hy-
pothesis regarding the reflectance of this group. It tries
a more complex BRDF model (a perfectly specular one
here). Again, Phoenix generates a new synthetic image
using the new hypothesis, and the inverse algorithm com-
putes a new error image to determine which object BRDF
must be modified. As we can see, the inverse algorithm
uses more and more complex hypotheses (hierarchical prin-
ciple) to obtain the correct BRDF and the corresponding
parameters. Several hypotheses are successively applied
and the algorithm stops when the error between the real
and the synthetic image is smaller than a global user-defined
threshold. The determination of the thresholds is not criti-
cal to our method and it can be found in [2, 4].

4.2. Computing the Ward’s BRDF parameters
All the BRDF parameters that are estimated here, come
from the Ward’s BRDF model[29]. We chose the same
BRDF model as Yu et al. [32] because of its small number
of parameters and its ability to simulate anisotropic sur-
faces. This model only requires the knowledge of five pa-
rameters for a complex BRDF: ��� the diffuse reflectance,
��� the specular reflectance, �� the anisotropy direction (call-
ed the brushed direction) and the anisotropic roughness pa-
rameters �
	 and �
� . Furthermore, this model avoids the
costly computation of the Fresnel term which has been re-
placed by a normalization factor. A detailed description of
this BRDF model can be found in [29].

4.2.1. Perfectly diffuse surfaces
The perfectly diffuse case is very simple because only one
parameter ( ��� ) has to be computed. During the first iter-
ation, all objects are assumed to be perfectly diffuse. Ev-
ery reflectance for each group is initialized to the average
of the radiances covered by the projection of the group in
the original image. Phoenix generates a new synthetic im-
age using these reflectance. A new error is computed as
the ratio between the average of the radiances covered by
the projection of the groups in the original image, and the
average of the radiances covered by the projection of the
groups in the synthetic image (see equation 1). This error
balances the original diffuse reflectance, and after several
iterations an optimum value of ��� is found 4.

�����
���� �
� ��� �

�
�������� � � �"!
�� ��� � �#� �$! (1)

where:���� � and
�� � � are respectively the average of the radiances and the pixels covered

by the projection of object % in the original image.� ��� � and
��#� � are respectively the average of the radiances and the pixels covered

by the projection of object % in the synthetic image.��� ! is the camera transfer function.

4it is shown in [2] that only 4 iterations are sufficient to converge to
an optimum value of &"'



Since the average radiance
��
% of object � is proportional

to the diffuse reflectance ��� % , the iterative correction of the
��� % can be written for each rerendering iteration � as:����� �
	 � ������� �� � � (2)

����� �
	 � ������� ��
� ��
��� ��� � ��� !�� � ������� � !� ��

��� ��� � ��� !�� � �� ��� �����
(3)

and � � ��� ! � �"! if
���$# �&%('*) !�� � �%

else
where:� � and

��� are respectively the total error between the original and the synthetic im-
age for group + and object % ., � is the number of objects for group + .� � is the median of the errors (selects the middle value of the sorted samples).)

is the authorized dispersion criteria.� � is the number of pixels covered by the projection of object % .
The function � � ! eliminates problems generated by smaller objects for which the
error is very important, because they are more sensitive to the image noise (their
projection in the image covers a small amount of pixels). An example of iterative
correction of ��� (and ��- ) is provided by Figure 2 on a simple real interior scene,
containing both diffuse and specular objects.

After several iterations, a new error image is still computed
as the difference between the real and the latest synthetic
image. If this error remains bigger than a user-defined
threshold for a given group, then the algorithm now de-
cides that all these objects are perfectly specular.

4.2.2. Perfectly and non-perfectly specular surfaces

In the case of perfectly specular surfaces, it is extremely
easy to compute the reflectance parameters, because � � has
a null value and ��� is constant ( ���/. �

). A new synthetic
image can be immediately generated taking into account
the new BRDF. But, if the new error for objects assumed
as perfectly specular remains large, the algorithm tries to
enhance the ��� parameter. This new type of BRDF corre-
sponds to the non-perfectly specular case. This specular
parameter is modified according to equation 3 applied to
��� instead of ��� . The images of Figure 2 have been gener-
ated using this technique and clearly shows a significant
decrease in the error during the inverse rendering itera-
tions.
If the resulting synthetic image still differs from the origi-
nal one in terms of error (image difference by group of ob-
jects), then the diffuse and specular hypothesis is applied.
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Figure 2: Simulation of hierarchical inverse rendering, where the top row from
left to right consists of the real image captured with a camera, the synthetic image
with a pure diffuse assumption (first iteration), the synthetic image with perfect dif-
fuse and perfect specular assumptions (fifth iteration) and the synthetic image with
pure diffuse and non-perfect specular surfaces (seventh iteration). On the bottom
row, we can see the error images corresponding to the difference between the real
and the synthetic image.

4.2.3. Both diffuse and specular surfaces

In the Ward’s BRDF model [29], we now consider the case
where ��� and ��� have a non-null value. All the surfaces are
assumed perfectly smoothed which means that there is no
roughness factor to compute.
These two parameters can be analytically estimated by min-
imizing the error between the real image and the synthetic
image as a function of ��� and ��� :

� � -10 �325476 ����8�9 !;: � �=<;9� � � � � ��� � � � ' ��- � � - 6 � ����8�9 ! !;:
where:,?>1@ , the number of pixels covered by the group projection.� -10 �3254 , ����8�9 the pixel intensities converted to radiances respectively for the syn-

thetic and the original images.

This minimization has an analytical solution for each wave-
length ACBEDFB � :GFH �H -JI �LKMMN � �=<;9�O �QP O ��8�9QR�

�=<;9�O - P O ��8�9QR
S3TTU KMMN

�
�=<;9�O :� �

�=<;9�O � O -�
�=<;9�O � O - �

�=<;9VO :-
S3TTU
���

In practice, such surfaces in real cases are very rare but not
impossible. For example, the top face of the desk in Figure
9 presents some photometric properties very close to this
approximation.

4.2.4. Isotropic surfaces

In order to solve the case of isotropic surfaces, we must
now find three parameters: the diffuse reflectance � � , the
specular reflectance ��� and the roughness parameter � [29].
In most cases, a direct minimization algorithm can be used
to find these parameters. However, we have shown in [4]
that it is not always easy to minimize such a function.
Therefore, it could be useful to separate the case � �W. �
from the other cases. We then minimize these two cases
separately using a downhill simplex method [12] and we
choose the parameters which produce the smallest error.

Figure 3 shows the result of these minimizations: the
aluminium surface (in the center of image) has been sim-
ulated as isotropic, and an optimum value of � �X. �(Y � �
and ���L. �(Y Z?[

has been found. However the error im-
age shows that a better approximation might be possible
for this particular surface. The error remains important in
the region bordering the specular reflection area of the two
books on this surface. Therefore a more complex BRDF
is needed and the algorithms now attempts to simulate the
surface as an anisotropic one.
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Error image for the glossy surface

simulated as an isotropic one

Figure 3: Approximation of the aluminium surface (anisotropic) of the real im-
age (left) by an isotropic surface in the synthetic image (center). The error between
these two images for the aluminium surface is visible in the right image. We note
that the error is still important in the area of the specular reflection of the books.
The red pixels correspond to a high error but they are not significant because they
are coming from an approximate positioning of the 3D geometrical model on the
image, especially on the edges of the objects.



4.2.5. Anisotropic surfaces

In the case of isotropic surfaces, we saw that we had three
parameters to compute ( ��� , ��� and � ). For the anisotropic
case, we must now compute the anisotropy direction ( �� )and
two other roughness parameters ( � 	 , �
� ) replacing the pre-
vious � in the isotropic case. It has been shown in [4] that
a direct minimization algorithm to estimate these param-
eters produces results of poor quality even if the method
converges. Therefore we propose a direct estimation of
the anisotropy direction from the original image.
If we could zoom in, we could see that an anisotropic sur-
face has small wave-like features (roughness) on the sur-
faces characterized by a common direction. This direction
called the brushed direction is the anisotropy direction that
we are looking for. These waves are clearly visible on the
left image of Figure 4 computed for an anisotropic surface.
However, they are not directly visible from the original im-
age: the left image of Figure 4 is displayed as a 3D surface
and it is produced from several processing steps that are
described below.

In a first step, we consider the anisotropic surface as
a perfect mirror and compute a synthetic image. Next, we
estimate the difference between the real image and the syn-
thetic one to visualize the part of the anisotropic mirror
where the specular reflection is “extended”. This area cor-
responds to an attenuation of the specular reflection, and
this effect is always very important in the direction perpen-
dicular to the brushed direction (or anisotropy direction).
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Figure 4: The selected object used here to recover the anisotropy direction is the
violet book of the lower left real image of figure 9. The 3D surface (left image)
shows the error image for the difference between the perfect specular reflection area
of this selected object, and its corresponding area in the real image. The 2D curve
(right) shows the average of the standard error deviations computed from the error
image along the sampled anisotropy directions (see also figure 5).

In a second step, we compute an index buffer for this
mirror of all the surfaces visible through it. We then look
for a reference surface that has the biggest reflection area
on the anisotropic surface, while being as close as possi-
ble to it. This surface is then selected in such a manner
that the ratio Area(reflected surface)� ����� � ! is maximized (with
d(S,P), the euclidean distance between the center of grav-
ity of the selected surface and the center of gravity of the
anisotropic mirror). The motivation of this choice resides
in the fact that surfaces very far from the anisotropic object
exhibit a reflection pattern that is too small or too noisy to
be usable for the recovery of the brushed direction. In a
third step, the anisotropy direction is sampled creating ��
vectors around the normal to the anisotropic surface. Each
of these sampled directions determine a direction to tra-
verse the error image and compute the average of the stan-
dard error deviations computed in the error image. Finally,
the algorithm selects the direction for which this average
value is the smallest one (see Figure 4). Figure 5 summa-
rizes the complete procedure.
Once the anisotropy direction �� has been recovered, a down-

hill simplex minimization algorithm is used to estimate the
roughness parameters � 	 and �
� .
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Figure 5: Computation method of the anisotropy direction �	 for a glossy surface.

4.2.6. Textured surfaces

When the anisotropic simulation of a surface still produces
large errors in the difference image, we proceed to texture
extraction.

Extracting the texture from the real image is an easy
task that can be realized using the technique proposed by
[31] for example. However, we have to extract this tex-
ture while taking into account the fact that it already has
received the energy from the light sources, and that the
pixels covered by its projection in the real image contain
this information. Otherwise, if we send the energy of the
light sources to these textures again, they will be over-
illuminated. Therefore, we introduce a notion called ra-
diosity texture that balances the extracted texture with an
intermediate texture in order to minimize the error between
the real and the synthetic image. As for the perfectly dif-
fuse reflectance case, this intermediate texture is computed
by an iterative method.

At the first iteration, the texture used to rerender the
image is the texture directly extracted from the real image.
At the second iteration, the texture used to obtain the re-
sulting synthetic image is multiplied by the ratio between
the newly extracted texture of this synthetic image and the
texture of the real image. This iterative process stops when
the user-defined threshold for textured surfaces has been
reached. The textures of the poster and the books in the
rerendered images of Section 4.3.2 have been obtained us-
ing this technique. The problem of this method is that it
computes a texture including the shadows, the specular re-
flections and the highlights. As an example, consider a
marbled floor on which a sphere is reflected. The texture of
this floor in the real image then includes the marble charac-
teristics, its reflectance properties and the sphere reflection
including its own reflectance properties. How then do we
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Figure 6: From left to right: original anisotropic floor, floor simulated as an isotropic object, and the error image between the original and the rerendered images.

extract the marble characteristics and independently of the
rest of the scene ? This is an extremely hard problem, and
Y. Sato et al. [26] have stated that no algorithm has yet
been proposed to solve it using a single image.

4.3. Results and computation times

4.3.1. Comparison of recovered parameters

In this section, we propose to give the values obtained for
the recovered BRDF of a computer-generated scene (see
left image of Figure 7). We compare them to the origi-
nal known values used to render the original image with
Phoenix.

Figure 7: Left: the original computer-generated image. Right: the new synthetic
image produced by our inverse rendering technique.

The first level of the hierarchy in the inverse render-
ing process computes all the parameters of the surfaces
in a straightforward manner. However, the error remains
large for the floor and the next levels are tested for this ob-
ject. The specular assumptions (perfectly, non-perfectly,
both diffuse and specular) produced large errors forcing
the algorithm to choose the isotropy hypothesis. During
the isotropy case, a global minimum has been found for
��� , ��� and � , and the synthetic image is visually very close
to the original as shown by Figure 6. However, as we only
set

���
for the maximum tolerated error to switch from the

isotropy hypothesis to the anisotropy, our method tries to
simulate the floor as an anisotropic object.

Using the method described in Section 4.2.5, our algo-
rithm finds all the reflectance parameters for the anisotropic
object. All the recovered values are summarized in Figure
8 and the final resulting image is shown in Figure 7.

4.3.2. Rerendered scenes

All the following synthetic images have been generated us-
ing Phoenix as the rendering and inverse rendering soft-
ware. The first synthetic image at the top right of Figure
9 has been generated in 37 minutes using the hierarchi-
cal algorithm from the left real photograph. Two specular
surfaces have been recovered and simulated as non-perfect
mirrors and 14 rerendering iterations were necessary to
generate the final image.

Surface Var Real Computed

Left wall ��� (0.66, 0.66, 0.66) (0.65916, 0.66075, 0.66037)��- (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

Right Wall ��� (0.69, 0, 0.95) (0.69002, 0.0, 0.95901)��- (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

Back Wall ��� (0.65, 0.65, 0.0) (0.64997, 0.65067, � � % ! ��� )��- (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

Ceil ��� (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)��- (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

Big Block ��� (0.77, 0.0, 0.0) (0.77002, � � % ! ��� , � � % ! �
	 )��- (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

Small Block ��� (0.0, 0.76, 0.26) (0.0, 0.75802, 0.25912)��- (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

Floor ��� (0.1, 0.1, 0.1) (0.10013, 0.10045, 0.09981)��- (0.9, 0.9, 0.9) (0.89909, 0.90102, 0.89903)
�

0.0
�

2.8
�

�� 0.07 0.06999
�?0 0.11 0.1101

Figure 8: Comparison between the recovered reflectance parameters and their
original values. Note that Ceil is not directly visible in the original image. When
this happens, the algorithm considered this object as a perfect diffuse white object.
In practice, if such a case happens, the user should find an object whose photometric
properties are close to Ceil. Ceil will then be declared in the same group as this
object.

The inverse algorithm required 4 hours and 40 min-
utes to produce the image at the bottom right of Figure 9.
Roughly 4 hours of this time were necessary to recover the
anisotropic BRDF of the aluminium surface. The final ren-
dering stage required 32 minutes to render the final image
(100 bounced rays have been used for the anisotropic sur-
face).

The images of Figure 11 show examples of applica-
tions in augmented reality. Some synthetic objects have
been added such as a small robot and a luxo-like desk
lamp. It is also possible to modify the reflectances with-
out much difficulty. New viewpoints can be generated and
new illumination conditions can be created as well.

5. Conclusion and Future Work

In this paper, we have presented a new technique to deter-
mine an approximation of the reflectance properties of the
surfaces of a 3D scene, and we have proposed an experi-
mental validation of our method. An incremental and hi-
erarchical algorithm iteratively estimates various types of
reflectance parameters, including anisotropic and textured
surfaces. The method takes as input a single photograph
of the scene taken under known illumination conditions as
well as a 3D geometric model of the scene. The result is a
complete description of the photometric properties of the
scene which may be used to produce a photorealistic syn-
thetic image very similar to the real one. We showed that
the method is robust and gives the opportunity to display
the original scene from novel viewpoint, with unrestricted
illumination conditions and with the addition, removal and



Figure 9: Example of a pure diffuse approximation of a whole 3D scene. From left to right: the original image captured with a camera, the synthetic image and a synthetic
image generated under a new viewpoint. The perfect diffuse assumption is realistic enough for many surfaces, except the computer monitor and the door. Moreover, even
if the desk is a real anisotropic surface, a pure diffuse approximation produces a realistic enough result for this object. Note that a book on the left bookshelf has not been
modeled. Due to the filtering step and the principle of the method, this does not disturb the inverse rendering case. However, this remains true only for small objects that do
not interact much with the real environment. A “very“ large error in the modeling step would definitely produce wrong results.

modification of objects.
Currently , our work has some limitations, especially

regarding textured surfaces. Until now, we are not able to
discriminate the shadows or highlights from an assumed
textured surface. In this regard, it will be interesting to ex-
tend our method to these cases, although we think that this
is a very difficult problem, if one remains restricted to a
single image.

Moreover, several other extensions are possible because
of the hierarchical property of our technique. For instance,
we may extend the reflectance recovery algorithm to ob-
jects that have more complex photometric properties such
as light beams, small fires and caustics as a few examples.
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Figure 10: Two different examples of synthetic images (right) rerendered from a single real image (left). We note that the perfectly diffuse assumption is realistic enough
for many surfaces including the walls, the floor, the desk among others.

Figure 11: Examples of several augmented reality applications. All these new images were rendered using our global illumination software Phoenix, which first recovered
the surface reflectances from the bottom left image of Figure 9. The top left image shows the original scene with some objects removed: the feet of the desk and the red
cube. Note that the right mirror has taken into account the modification. The right top image shows the original scene rendered under a novel viewpoint. The bottom left
image shows the scene with modified photometric properties, and the addition of an object: a small robot. The bottom right image presents the scene under novel illumination
conditions with the addition and deletion of objects.


