
ADVANCED COMPUTER VISION
AND GRAPHICS COLLABORATION TECHNIQUES

FOR IMAGE-BASED RENDERING

SAMUEL BOIVIN AND ANDR�E GAGALOWICZ �

Abstract. The idea of using real images to generate photorealistic computer graphics (scenes)
has led to the development of Image-based modeling and rendering. These techniques are very similar
to those developed some years ago within the framework of analysis/synthesis collaboration. In this
paper, we present a new approach to reconstruct the 3D geometry and photometry of a scene based
upon two distinct processes. A vision process uses two digital images of a scene captured with a
camera to reconstruct its full geometry. A computer graphics process uses a single image to recover
the photometry of the the surfaces (i.e. the surface re
ectances) and the radiance-to-pixel function by
minimizing an error function. The generated images are then used as a feedback to modify the surface
re
ectances. Our aim is to �nd the simplest re
ectance model allowing to faithfully reconstruct the
original image of a scene, keeping in mind that the related photometric analysis is highly dependent
on the complexity of the searched model.

Our approach generates photorealistic images using a rapid global illumination algorithm includ-
ing the computation of a specular component. This algorithm is driven by the mean square error
between the real image and the synthetic one, and minimizes it with respect to the parameters of
the photometric model and of the radiance-to-pixel conversion functions. Several applications of this
method are presented, such as augmented reality.

Key words. analysis/synthesis, image-based rendering, image-based modeling, computer graph-
ics, augmented reality, radiosity, model-based vision, image segmentation, region matching, object
reconstruction

1. Introduction. Collaboration between computer graphics and computer vi-
sion has become a very developed research domain. In fact, there are two (dual)
interesting outcomes to this collaboration.

On the computer graphics side, image synthesis was limited by the fact that all
generated images did not use real data or real images to be computed. Therefore, no
realistic images could be synthesized. This was clearly a limitation of image synthesis
methods. With the (latest) advances in image-based modeling and rendering research,
it is now possible to reconstruct the full geometry and photometry of a scene, using
digital images of the real world, captured with a camera. This gives the opportunity
to apply computer graphics algorithms merged with vision ones to compute synthetic
images of real world. A lot of applications are made possible with these techniques:
some new synthetic or even unreal objects can be added to the original image, new
viewpoints of the scene can be computed using classical rendering methods of com-
puter graphics, etc.

On the vision side, this cooperation oriented image interpretation towards a
model-based approach. Computer graphics techniques bring feedback and o�er im-
proved possibilities to realistic vision solutions. These solutions show (considerably)
better stability when comp ared to previous open-loop solutions.

Our presentation introduces a new method which is original in two aspects: on
one hand, only two images are necessary to reconstruct the full 3D geometry of the
scene, and on the other hand, only a single image is necessary to reconstruct the full
photometry of the same scene. This last method is based upon a new algorithm that is
at the hear t of the analysis/synthesis concept: computer vision is used to reconstruct

�This work was done at I.N.R.I.A. Rocquencourt, MIRAGES Project, Domaine de Voluceau,
78153 Le Chesnay Cedex, fSamuel.BoivinjAndre.Gagalowiczg@inria.fr

177

178 Samuel Boivin and Andr�e Gagalowicz

the photometry and a computer graphics rendering algorithm produces feedback to
drive this operation. Finally, a synthetic image is obtained, simulating the real world
very realistically.

2. Vision. The purpose of image analysis is to produce an intrinsic interpre-
tation and representation of a scene from images. In the general case, we have to
consider image sequences. But in this paper, we restrict ourselves to the case of anal-
ysis of a stereo pair (see �gure 2.1), leaving to future research the updates of the
techniques which will be presented below, for the case of image sequences.

In general, an intrinsic representation of a scene consists of:

� a three dimensional geometric model of this scene which includes light sources
and cameras (positions and extensions)

� a photometric description of the object surfaces and of the light sources. This
description has to account for the simulation of the energetic transfer among
these objects.

Fig. 2.1. Original stereo pair to analyze.

If both types of information are available, they can be used by a domestic robot
for example, because it will have a perfect understanding of the scene. It can also
be used in multimedia application s such as virtual reality, augmented reality, post-
production, etc.

First, we detail how to obtain the geometric representation of the scene from a
stereo pair. We suppose that we use calibrated cameras to do this analysis.

2.1. Segmentation. We begin with the segmentation of both images of the
stereo pair. Numerous techniques, either bottom-up or top-down, were tried. We
have chosen a non parametric method which is fully data driven (see [2] for more
details). This method is a regularization technique which minimizes some weighting
between a mean square approximation error and the total frontier length produced
by the segmentation.

Let s be a pixel in the image domain I , Zs is its grey level intensity (or the R;G;B
vectors for color images) in the original image, Ls its label in the segmentation. This
criterion is de�ned by:

EZ(L)

NX
k=1

X
s2Ik

(Zs � �Zk)
2 + �

X
<s;t>2I�I

(1ILs 6=Lt
) (2.1)

Image-Based Modeling and Rendering 179

where : < s; t > denotes a couple of adjacent pixels

1IX

�
0 if X is true
1 if X is false

a region Ik is a set of connected pixels having the same labelL

N is the (variable) number of regions

Fig. 2.2. Segmentation results of the stereo pair (each color represents a distinct region).

The �rst term of equation (2.1) is the sum of the distances between the original
image and its piecewise constant approximation. The second term is the length of the
boundary between regions and it penalizes excessive splitting of the image.

The only parameter de�ning the segmentation is � and this technique minimizing
equation 2.1 is fully automatic and does not contain any parameter itself (threshold,
...). So except for �, it is e�ectively driven by the image data. If � is small, this seg-
mentation produces many regions and few if � is big. In fact, � drives the re�nement
of the segmentation.

The results corresponding to the stereo pair shown in �gure 2.1 are presented in
�gure 2.2. Of course, they are not perfect as segmentation is an ill-posed problem,
but a certain number of obtained regions are correct.

2.2. Region Matching. The next step consists of the region matching of the
two images. We have to �nd out what are the region pairs (left and right) which come
from the same three dimensional region that we suppose planar. Our experimental
conditions are the following: the distance between the two cameras (or camera posi-
tions) is small with respect to the camera-to-object distances, and the angle between
the two optical axis varies from �ve to ten degrees. Thus, both images are very similar
(as it can be seen in �gure 2.1) as we have almost two parallel projections. All real 3D
facets must therefore have very close projections on both images. So, we have to �nd
out similar regions on left and right segmentations of �gure 2.2. We use global region
features and the epipolar constraint to obtain the matches. The computation requires
a very short time, as this combinatorial problem is considerably reduced thanks to
the constraints (see [21]).

Results of such a matching are shown in �gures 2.3. Matched regions get the same
color. Regions which were not matched are colored in black. Fortunately, a certain
number of regions are matched correctly as we allowed only very strong similarities
among regions. This gives us the opportunity to start the 3D reconstruction of the
identi�ed parts of this scene.

180 Samuel Boivin and Andr�e Gagalowicz

Fig. 2.3. Matching results using the segmentation images 2.2.

2.3. 3D reconstruction. Given previous region pairs and calibration data, it
is possible to compute the 3D position of the planar facets from which each region
pair is the projection[43]. The originality of our method lies in the use of the epipolar
constraint and of the coherence of the region to perform the reconstruction. It is a
global technique (and not a point-to-point one). Roughly speaking, the position of
the 3D facet obtained is such that it mirrors the left region exactly on the right one,
and conversely. More precisely, we maximize the overlap between the right region and
its mirror projection coming from the left one.

Fig. 2.4. Reconstruction results showing the reprojections of the 3D facets found (white wire-
frame) on the natural images.

Once again, to avoid errors we kept only the most important regions for the re-
construction. Results in �gure 2.4 have been computed using this technique. The 3D
facets were reprojected on the left and right images and visualized in a white wire-
frame. The reconstruction seems good, but, if we display its true three dimensional
location with respect to the real scene database, it appears very bad (see �gure 2.5).

The error is very important in the direction of the focal axis of the camera. When
we reproject it on left and right images, this error disappears.

2.4. Recognition. The �nal step in geometric analysis is recognition. Our ap-
proach is a model-based one: we suppose that we dispose of a 3D model of the scene.
The problem is restricted to the case where we have to �nd out what is the part of
the database which is seen from the camera. How to get a scene database is a very
important issue but it will not be discussed here (readers interested in this topic are
referred to [32]). In other words, we have to �nd what is the position of the camera
with respect to this database.

To do so, we compare the 3D facets obtained from section 2.3 with the set of all

Image-Based Modeling and Rendering 181

Fig. 2.5. Result showing the 3D reconstruction of a three facets(green) in the wireframe of the
real scene (white).

facets of the database. The problem is to determine what the relationships between
these two sets are. The solution we propose uses a hashing technique[27] in order
to perform, for each model facet, a �rst pruning of the scene ones which will be
candidates for future matching. The algorithm then looks for the maximum number
of matches compatible with the fact that this matchings must correspond to a rigid
transform between the two sets of facets. We use a displacement error threshold to
evaluate this property. If several solutions exist, we take the one which minimizes the
mean square error between the scene facet vertices and the rigidly displaced model
ones. For this purpose, we use the classical algorithm described in [17], which gives the
best displacement (R; T) �tting the database model with the observed scene. Finally
the image geometry is obtained by windowing and clipping the displaced database
(using (R; T)) in order to retain only what is perceived by each camera. A Z-Bu�er
algorithm allows to get rid of all non visible facets. The result of this operation is
shown in �gure 2.6.

Fig. 2.6. Recognition results using the reconstructed facets of �gure 2.4. The original stereo pair
is visible on the background and the white wireframe shows the position of the part of the database
that the algorithm found.

As it can be observed, the model database proposes a scene interpretation but
with a very approximative position of the objects. This is due to the fact that the
reconstructed facets were themselves badly positioned. Nevertheless, this recognition
gives a model-based segmentation of both images which is much more interesting than
in �gure 2.2. How to improve the recognition ? The idea consists of using what we see,
which is the di�erence between the segmentation of the real images(�gure 2.2) and the
segmentation proposed by recognition. We restrict ourselves to the use of the regions
corresponding to the reconstructed facets. More precisely, we compute the error

182 Samuel Boivin and Andr�e Gagalowicz

between the projected vertices of the model facets (associated with the reconstructed
ones) and the corresponding vertices of the segmented regions (blackboard and desk
facets of �gure 2.2) as a function of (R; T). This is a non linear function and we
minimize it using a simple gradient technique initialized by the (R; T) values coming
from the linear step described above. A �rst iteration is shown in �gure 2.7.

Fig. 2.7. Recognition results: non linear improvement after one iteration.

The procedure is further iterated; a second iteration is shown in �gure 2.8. This
seems to be an acceptable recognition result. Some discrepancy between the recog-
nition result and the ideal solution still remains, which comes from various defaults.
The major one is due to segmentation errors: we try to �t a best reprojection of ideal
facets with segmented regions which are not exactly what they should be. Another
important defect is the database itself that was constructed interactively. It could be
possible to improve its position by comparing the model-based segmentation with the
original data of both images themselves. But this was not performed in our case.

Fig. 2.8. Final recognition results.

In conclusion, our results prove that a model-based approach allows to solve
the problem of the 3D automatic geometric reconstruction of a scene. The result
presented corresponds to what we called a global case where we have a global model
database. But in essence, this method could be investigated in a local approach where
the database would consist of a set of distinct possible objects. The local method was
still not solved completely and will be the subject of future research.

After having obtained a three dimensional representation of the scene shown in the
images, we are interested now in its photometry analysis. This is a diÆcult problem
that we propose to solve using an analysis/synthesis collaboration procedure. Before
that, we describe some computer graphics techniques which are necessary for the task.

Image-Based Modeling and Rendering 183

3. Computer Graphics Techniques.

3.1. Generating a photorealistic synthetic image. A lot of techniques have
been developed to synthesize images. Here we are going to introduce the methods
that are necessary to compute a photorealistic one.

The rendering process is subdivided in two important parts: a hidden-surface
removal technique (which is used to determine for each pixel of the image to synthesize
what is the 3D object, which geometric element of the object will be seen there), and
the color computation of this pixel.

There are several hidden-surface removal techniques. The most popular are the
Z-Bu�er method (Catmull[7]) and the Ray Tracing one[3, 30, 47] which are used today
in many applications, especially in special e�ects for movies. Of course, there are other
famous but less used techniques like the Warnock subdivision[45], the Newell-Sancha
algorithm[33], etc. We are interested in the �rst two ones. We also want to describe
the A-Bu�er[6]; it is an advanced Z-Bu�er technique yielding nice anti-aliasing e�ects.
Although it presents very interesting properties, it is not so currently used.

The techniques for computing color are numerous. This is generally called illu-

mination: one can estimate the color of a surface while taking into account only its
own photometric properties (local illumination), or, could include the relations and
the in
uence that the other objects have on it (global illumination).

3.2. Famous hidden-surface removal techniques.

3.2.1. Z-Bu�er. The Z-Bu�er[7] is certainly the most famous hidden-surface
removal technique in the world. Almost all graphics hardware now include hardware
Z-Bu�ering. This method proceeds as follows: given a viewpoint and its viewing
direction and a three dimensional scene subdivided into facets, the Z-bu�er technique
computes a bu�er containing the information of depth for a surface of the scene.
Firstly, the facet coordinates are transformed into the camera space, and projected
onto the screen. Then, a �lling algorithm is applied to �ll each facet and compute its
depth (for all interior points). This depth is compared to the one which is contained
in the depth bu�er (Z-bu�er). If this depth is smaller than the one inside the Z-bu�er,
then the new depth is the newly computed one.

Z-Bu�er Pseudo-Algorithm:

For each x; y of the image buffer

f
ZBuffer[x][y] = +1
g

For each facet i in the scene

f
i0 = Transform i in the camera space coordinates

i00 = Perspective projection of i0 on screen

For each pixel xi00 ; yi00

f
if z00[xi00][yi00] < ZBuffer[xi00][yi00]

f
ZBuffer[xi00][yi00] = z00[xi00][yi00]
Image[xi00][yi00] = Compute Color For Surface i

g
g

g

184 Samuel Boivin and Andr�e Gagalowicz

3.2.2. A-Bu�er. The A-Bu�er technique [6] is close to the Z-bu�er one because
it uses the same principle of surface projection and �lling. The biggest di�erences
with the Z-bu�er algorithm are that, in one hand, for each pixel we store the list of
surfaces which are hitting it rather than just one surface, and on the other hand, we
compute for each surface the part that its projection occupies in the pixel (this is
called a fragment, see �gure 3.1). These operations correspond implicitely to a pixel
oversampling, which has the property to reduce aliasing e�ects.

= &

= &

Fig. 3.1. Fragment example. Here the fragment is the combination of two precomputed frag-
ments, where the top part of the �gure is the real representation and the bottom one, the (discrete)
computer one.

0 1 2 3 4 5 6 7

15
14
13
12
11
10
9
8

23 22 21 20 19 18 17 16
24
25
26
27
28
29
30
31

Fragment[1][21]

Fig. 3.2. Fragment coding and array access to get a fragment.

In a pixel, a fragment of a surface is approximated by a convex polygon, so that
a polygon area can be considered as the logical intersection between the parts of the
pixel obtained (using a counter-clockwise orientation of the polygon) by the right
half-space of this pixel area determined by each line of the polygon. In order to
perfom this operation eÆciently, we precompute a two dimensional array containing
all possible basic fragments obtained by cutting the pixel with a single line, starting
from the border of the pixel and leaving this border as shown in �gures 3.2 and 3.3.
This operation has a very low CPU cost since it is done only once: the precomputed
basic fragments are stored in a static table directly in software.

During facet �lling, all fragments (except pixel entries and exits, of course, which
are computed each time) are read from the previous array. For each pixel we build
a dynamical list containing (in depth order) the depth and the fragments (8 � 8
array) of each surface having a visible contribution to the pixel. This is di�erent
from the Z-Bu�er technique where only a depth value is stored. When all facets have
been treated, we traverse all the lists of pixels and take in to account the occupancy
percentage(�gure 3.4) of the correspond ing facet in the fragment in order to compute
the �nal color. Each time a new fragment is discovered, to check if it has a visible
contribution, a XOR operation is applied to remove the parts of the surfaces that
have been previously processed(�gure 3.5).

3.2.3. Ray Tracing. Ray Tracing[3, 30, 47] (sometimes called Ray Casting
when it is limited to hidden face removal) is a powerful technique that is used in many

Image-Based Modeling and Rendering 185

&

Precomputed
fragment[1][21]

Precomputed
fragment[21][9]

In

Out

In

Out

Final fragment

Edge
directions

Surface
projected

onto a pixel

Fig. 3.3. Fragment Computation. First we use the facet edges as line supports. Then we
can compute the pixel entry and exit: this entry and exit (integers) are the direct indexes to the
corresponding precomputed fragment.

Fragment[1][21]

Occupation rate for fragment:
53/64 subpixels =82.8%

Fig. 3.4. Fragment occupation.

applications today. Ray Tracing starts by sending rays from the observer through a
virtual screen placed in front of the scene (see �gure 3.6).

All these rays are mathematically intersected with all the objects of the scene,
which do not need to be subdivided into facets (as opposed to Z-Bu�er). All the
intersections found are depth-sorted in such a manner that the nearest one will cor-
respond to the closest visible object. This is clearly an advantage of Ray Tracing
method because objects occupy a smaller amount of memory than if they were ap-
proximated by facets. Another advantage of this technique is that we may compute
the exact intersection between the ray and the object: the Z-Bu�er method needs to
interpolate depths from vertices where the �lling algorithm is processing the interior
of the facet.

The greatest advantage of Ray Tracing is the possibility to take into account
speci�c properties of objects like transparency or specularity (mirror) for example. If
a mirror object is intersected, a secondary ray is computed using Descartes'Law to
�nd the next object that is seen from this mirror: this can be applied recursively and
this recursive approach is speci�c to Ray Tracing.

Two big problems of Ray Tracing method are that, on one hand, it is very slow
because of the intersection computations (this could be optimized using speci�c tech-
niques such as Octrees[29], BSP[19], Bounding Boxes[46]), and on the other hand it
generates aliasing e�ects due to the screen sampling and could miss some far objects
(see �gure 3.7). This could be resolved too, using adaptive subdisivion of pixels or
stochastic supersampling (more than one single ray per pixel are sent). Ray Tracing

186 Samuel Boivin and Andr�e Gagalowicz

Depth-sorted
fragment list

^

^

Final_color=56%x
+17%x
+21%x

Occupation = 56%

Occupation = 17%

Occupation = 21%

Increasing
Z values

Fig. 3.5. Fragment list processing: each fragment is XORed with the previous one to compute
the �nal contribution.

Image/Screen

Observer

Ray

Pixel

3D Scene

Fig. 3.6. Ray Tracing principle: one ray is sent from the observer through each pixel of the
screen and an intersection is eventually computed (here with a red sphere).

is very simple to implement and can be very eÆcient using all classical optimizations.
It can process very easily specular, transparent objects and more complicated ones
like participating media (�re, gazeous phenomena).

Observer

Ra
ys

Screen

Sc
re

e
n

b
o
rd

e
r

Fig. 3.7. Ray Tracing sampling problem: rays could miss some objects. Here the yellow and
the green sphere passed through the intersection tests.

Image-Based Modeling and Rendering 187

3.3. Illumination techniques.

3.3.1. Local Illumination. A local illumination model is generally used for the
scene, where we do not want to take into account di�use or specular interre
ections,
and we consider that object illumination mainly comes from the direct e�ect of light
sources. Such models are very easy to compute but they su�er from a lack of realism.
These techniques are neither physical enough nor sophisticated enough to render
di�use interre
exions, for example. So we will not discuss this part too much since
we just want to introduce techniques that could bring photorealism.

Let us consider one of the most popular local illumination models: the Phong
model[35] (often associated with Phong shading[35]).

I� = Ia�kaOd� +

mX
i=1

fattiIp�i [kdOd�(~N � ~Li) + ksOs�(~Ri � ~V)
n] (3.1)

I� is the �nal computed color for � wavelength;

Ia� is the ambient intensity which represents a type of constant luminosity applied to
all the scene;

fatt is the attenuation function of the light source intensity, depending on the dis-
tance separating this light source from the surface. fattD

1:0
d2

for example, with d the
euclidien distance between the light and the facet;

Ip� is the light source color for each � wavelength;

Od� and Os� are the di�use and the specular color of the object, respectively;

ka, kd, ks are the ambient, di�use and specular material properties of the object;
~N is the normal vector;
~Ri is the re
ection vector (see �gure 3.8) for light source i;
~Li is the light vector for light source i de�ned by the intersected point and the light
source i position;
~V is the view vector de�ned by the intersected point and the observer position;

n is the rugosity coeÆcient of the object;

m is the number of light sources.

N
RL

V � �

Fig. 3.8. Representation of the vectors needed in the Phong illumination model.

When computing the normal at each point of a surface to estimate the color of
this point in this framework, one is using Phong Shading. If the normal and the color
at each vertex of a facet are computed, and then these colors are interpolated, one is

188 Samuel Boivin and Andr�e Gagalowicz

using Gouraud Shading[26] (this technique is often included in 3D graphic hardware
and is faster to compute because the illumination model is not applied at each point).

Local illumination models do not take into account di�use interre
ections or spe-
ci�c photometric properties of materials such as mirrors, glasses or �res. Therefore, we
need to introduce a more complicated illumination model like the Radiosity approach,
which is a global illumination model.

3.3.2. Global Illumination: Radiosity and Ray Tracing. We distinguish
two methods: the radiosity[25] technique and the ray tracing one[3, 47, 30]. A com-
bination of these two techniques gives more realistic images. The radiosity technique
is dedicated to di�use interre
ections while ray tracing is eÆcient to process specular
surfaces.

The radiosity equation 3.2 is directly derived from physics[39]. It consists of a
simulation of the energy transfers that occur in a scene. This simulation computes
the energy balance when surfaces are shooting and receiving their energy in the 3D
space. As all objects are purely lambertian, the energy sent from one facet another
is simply the product of the energy density (radiosity) of this facet multiplied by the
solid angle from which the other facet is seen from the �rst (it explains the existence
of form factors Fij in equation 3.2.

Bi = Ei + �i

nX
j=1

Bj Fij (3.2)

where:
Bi is the radiosity of surface i
Bj is the radiosity of surface j
Fij is the form factor between facets i and j with the reciprocity relation: AiFij =
AjFji (Ai and Aj are the facet i and j surface areas)
Fij is equal to

1

�
� �ij with �ij , the solid angle from which facet i sees facet j.

�i is the re
ectivity of surface i. It can be related to a complex re
ection function
like the bidirectional re
ection distribution function (BRDF).

This equation tells that the radiosity Bi of facet i is equal to its internal energy
density (emittance Ei which is non-zero only if it a light source) plus �i times the
energy coming from all facets j (where (1 � �i) times this coming energy is simply
transformed into heat by object i). The radiosity equation is not hard to solve, but it
is very CPU and memory demanding. Indeed, to solve it, it is necessary to compute
the form factors or con�guration factors[39]. This is discussed later in this section.

A plethora of resolution methods[10] exist to solve the radiosity equation like
Southwell, Gauss-Seidel, Jacobi Iteration. One of the most common techniques is Pro-
gressive Radiosity[9], which consists in sending the energy starting from the patches
(surfaces) that have the biggest radiosity. This considerably speeds up the convergence
to the solution, and some other acceleration techniques can be added too (Ambient
term, Positive Overshooting). Progressive Radiosity computes only one row of form
factors by iteration (the form factors Fij related to the facet i considered), and pro-
duces an illumination iteration where only all previously considered facets propagate
their energy in the 3D scene. Each iteration can be displayed to see convergence (see
pseudo-algorithm in �gure 3.9). Of course, of lot of other methods exist to solve linear
systems and what we cited is not an exhaustive list of all possible techniques.

Image-Based Modeling and Rendering 189

For all patch i in the scene

f
Bi = Ei ; // radiosity initialization to surface emittance

ÆBi = Ei ; // initialization of the radiosity to send

g
While (radiosity to send > threshold)

f
// a patch is selected to shoot its energy through the scene

Find Patch i with largest ÆBi �Ai ;

// a patch is subdivided into smaller parts called elements for

// energy gathering

For each element j;

f
Compute one row of form factors Fij ;

Compute reciprocical Fji using AiFij = AjFji relation;

ÆB = ÆBi � �jFji ;

ÆBj + = ÆB ;

Bj + = ÆB ;

g
ÆBi = 0 ;

For each element j

f
// (Rescaling is used for visualization purposes)

Rescale radiosity of element j: Bdj =
Bj

max
8elementsk(Bk)

;

g
For tt each vertex l in the scene

f
Compute radiosity Bl as the average of all rescaled

radiosities Bdk of elements k which are connected to vertex l.

g
Linearly interpolate vertex radiosities using Gouraud Shading

to display image.

g

Fig. 3.9. Progressive Radiosity pseudo-algorithm.

Fij =
1

Ai

Z
Ai

Z
Aj

cos�icos�j
�r2

VijdAjdAi (3.3)

where Vij is the visibility term (0 or 1) between facet i and j.
Form factors computation using equation 3.3 (see �gure 3.10) is the hardest task

in the radiosity process[34]. There are a lot of techniques to evaluate the form factors:
hemicube[8], proxel plane[40], Monte Carlo ray tracing[36] are the most famous. Some
form factors can be analytically estimated for sufaces in speci�c positions, e.g. if they
are perpendicular or parallel.

In all cases, one needs to take into account occlusions: that is to say, it is possible
that another surface blocks the energy leaving a surface, by intercepting it. In the
form factor determination, the visibility term (Vij term in equation 3.3) represents
the major part of the total CPU load. If a hemicube is used (a half cube is placed
on the surface i to simulate the fact that it sends energy in the half-space), one can
use classical hidden face removal techniques such as Z-Bu�er or A-Bu�er, to avoid

190 Samuel Boivin and Andr�e Gagalowicz

d� j

� i

� j

r

facet i

facet j

Fig. 3.10. Form factor geometry: form factor Fij is the fraction of energy leaving element i
and reaching element j (see equation 3.3).

form factor aliasing. This is the technique used by Phoenix, a rendering software
developed at INRIA(see �gure 3.11). It is interesting to note that, since graphics
hardware got Z-Bu�ering, especially on the powerful SGI stations, this form factor
computation is greatly accelerated[4]. In Phoenix, some form factors are stored to
avoid their recomputation in the re
ectance recovery process, decribed later. The
combination of A-Bu�er and hardware Z-Bu�ering gives speed and enough realism,
as shown by the rerendering result images of �gure 4.10.

Fig. 3.11. The Phoenix photorealistic rendering software.

Ray Tracing could be used with well-known optimizations such as octrees[29],
shaft-culling[28]. The rays are sent from a surface through a hemisphere centered on
it, and its sampling can be non-uniform. All the rays reach other surfaces in the scene
and tell what are the elements seen from the shooting surface.

To �nish with, some recent developments led us to the concept of visibility
complex[15, 16]: a structure that stores all the geometric relations between surfaces.
This technique is very powerful but could require a lot of memory space.

Radiosity is very eÆcient for perfect di�use interre
ections simulations. To take
into account specular surfaces such as mirrors for example, a combination with Ray
Tracing techniques is necessary. Therefore, to compute photorealistic images it is
important to develop a hybrid method that integrates both Radiosity and Ray tracing
techniques. Phoenix integrates all these techniques using all possible optimizations
to perform photorealistic rendering, as fast as it can. Phoenix is a powerful computer

Image-Based Modeling and Rendering 191

graphics software used to develop image-based rendering algorithms as described in
the next section.

4. Photometry Analysis.

4.1. Introduction. We return to the problem of a 3D scene photometry deter-
mination. The approach that we propose consists of using a photorealistic technique as
a feedback which estimates the quality of the photometry obtained, but also provides
some useful concepts necessary for the photometry analysis. To solve this photometry
determination problem, we suppose that we know completely the 3D geometry of the
scene to analyze and that we have at least one image of that scene.

PHOTOMETRY
(Reflectivity
coefficients ρ)

Radiosity
"Image"

DIGITAL
IMAGE

Pixel
TRANSFORMATION
(NORMALIZATION)

T()

IMAGE
SYNTHESIS

3D GEOMETRY

Fig. 4.1. Graph of a computer graphics image generation.

We now explain the details of our procedure. Realistic rendering algorithms use
as inputs the 3D geometry and the photometry of the scene (see �gure 4.1). For the
photometry, most algorithms use simple lambertain models which have the property to
approximate well real scenes in spite of their simplicity. Object surfaces are considered
as non textured so that one re
ectivity � is suÆcient to completely model an object
surface re
ectance. Image synthesis solves the light energy balance equation 3.2 for
all object facets. Then, the projection on the image plane of the light energy density
obtained (that we call a radiosity \image", in watt=sr=m2) is rendered. When texture
is present it is usually added after synthesis as a modulation of the object radiosities.
(R;G;B) values of each pixel have to be normalized (pixel transformation T ()) so
that we obtain values de�ned in the [0; 1] interval for visualization in a framebu�er of
a computer. What happens in nature when we get an image of a scene from a camera
? The energy balance is achieved physically almost in real time when light is switched
on in a scene. In fact, it is this stable state which is modeled in the rendering
process. A camera simply projects the observation of the scene radiosities on its
image plane and the (R;G;B) CCD matrices convert the radiosity energy in pixel
values. So, to obtain a realistic image, the rendering technique must be such that the
pixel transformation T () corresponds to the (R;G;B) CCD camera transfer
function. Usually this transfer function is not given by the camera manufacturers,
so that it is unknown; nevertheless, we know that it is a non-linear monotonically
increasing transfomation, so that it is invertible.

PHOTOMETRY
(Reflectivity
coefficients ρ)

Radiosity
"Image"

DIGITAL
IMAGE

INVERSE Pixel
TRANSFORMATION

T-1()

Computation of
reflectivity
coefficients ρ

3D GEOMETRY

Fig. 4.2. Graph of the analysis process.

Consider now the photometry analysis problem. We propose to solve it using the
reverse path of �gure 4.1. The inputs of this problem are the digital image and the 3D

192 Samuel Boivin and Andr�e Gagalowicz

geometry and we proceed as follows (see �gure 4.2): we start from this original image
and transform it with T ()�1 (that has to be computed from the transfomation T ()), so
that we obtain a radiosity image. With a simple backprojection of the radiosity image
(using the 3D geometry), we get the true radiosity of the (scene) object surfaces. The
advantage of the computation of radiosities is that equation 3.2, which relates the �
re
ectivities to the radiosities, is linear. It is then easy (we will see how below) to
compute the � coeÆcients by inverting this equation. The problem is that we do not
know T (), though we know that it is an increasing operator. The solution we propose
is to use image synthesis as a feedback loop to the previous scheme of �gure 4.2, which
will stabilize this open-loop system (solving the very diÆcult photometry problem).
The �nal solution we propose is thus summarized in �gure 4.3. This scheme implies
that we have to use the image synthesis path a certain number of times (which gives
an iterative aspect to our procedure) and tune the photometry analysis until the error
between the original image and the synthetic one becomes small.

ORIGINAL
IMAGE

Radiosity
"Image"

Pixel
TRANSFORMATION
(NORMALIZATION)

T()

IMAGE
SYNTHESIS

Radiosity
"Image"

INVERSE Pixel
TRANSFORMATION

T-1()

Computation of
reflectivity
coefficients ρ

+

-

ANALYSIS PATH

SYNTHESIS PATH

Fig. 4.3. Graph of the full inverse rendering process.

4.2. Previous works and overview of the problem. First work was pre-
sented by Andr�e Gagalowicz [20, 22] as a cooperation between computer vision and
computer graphics techniques, known as Analysis/Synthesis. Gagalowicz's technique
came from the idea that we can use a real image captured with a camera as a strong
provider of information to regenerate a synthetic one. The dual idea was to use
this synthetic image as a feedback to the real image, in order to test the validity of
the vision tasks (geometric and photometric analysis of the scene). A �rst complete
geometric reconstruction and photmometric analysis technique of a real scene was
proposed in [23], leading to a �rst realistic synthesis of this scene. Here, we show an
extension of this idea as an iterative (feedback) technique which uses the informa-
tion of the original image and the 3D geometry of the scene to correct the generated
image. This method approximates the surface re
ectances, precisely enough to get
a photorealistic image, using the previously described computer graphics algorithms.
This new image synthesis is close in spirit to the original one, and can be exploited
for other applications like augmented reality. This is discussed in the last section of
this chapter.

Image-based rendering techniques have really been developed with the recent
papers published by the Berkeley team [11, 12, 13, 48, 49]. These works propose
important advances in image generation using real images. [48] describes a technique
that can recover the bidirectional re
ection distribution function (BRDF) over all

Image-Based Modeling and Rendering 193

surfaces inside a three dimensional scene, using a set of images and the 3D geometry
of the scene. A limitation of this techique resides in the fact that they need a large
set of images (40 images are selected from a set of 150 exposures) to compute these
BRDFs.

In [18, 20, 23, 37], some interesting ideas are given to compute photorealistic im-
ages using one single image. These algorithms are based on the use of pixel intensities
covered by the surface projection onto the image, to compute an approximation of
their re
ectances. Like [14, 31], our research uses this technique as an initialization
process, but we use a feedback loop technique (see �gure 4.3) instead of former tech-
niques which are open-loop and are consequently less stable. We also add a new algo-
rithm that can recover the perfect specular and the perfect di�use surface re
ectances
and the radiosity-to-pixel conversion function, iterating if necessary by minimizing an
error function between the original image and the synthetic one. This technique has
been enhanced since [5], including the global illumination algorithm that needs to be
very fast because of rerendering iterations (we compute several radiosity images to get
the �nal result). The rendering software Phoenix is based on the technique described
in the previous section, but also has this rerendering functionality.

The photometry problem is subdivided in two parts: the surface re
ectance re-
covery and the estimation of the radiosity-to-pixel conversion function. The solution
of the �rst problem will be discussed in a following section. As it is a linear problem,
the reader will recognise that it should be easy to solve. Let us begin by considering
the second problem. Several methods are possible supposing that this function is
of a known type (
 correction function for example) or unknown. The next section
presents results when we suppose that this camera transfer function is completely
unknown.

It is important to note that, in the following, objects which have the same pho-
tometric properties are put together in groups. This gives us the opportunity to
compute the radiosity for the surfaces that may not be directly seen in the real image.
All objects are subdivided into surfaces or facets.

4.3. Unknown camera transfer function.

4.3.1. Linear case. We suppose that the transformation function T () is linear.
Practically, due to the lack of physical data (coming from the camera), radiosity values
can be only evaluated modulo a scaling factor. In the linear case, pixel intensity values
can be considered as radiosity values. Therefore, the photometry is directly coming
from the solution of the �rst problem, and from the direct use of pixel intensities.

The left image of �gure 4.4 shows a reference synthetic image produced by
Phoenix. The linear solution consists of computing the re
ectivity coeÆcients �,
feeding them to the rendering software and simply visualizing the radiosity image.
This result is presented on the middle image of �gure 4.4. We can see immediately
that the rerendered image is very di�erent from the original one, which proves that
T () cannot be approximated in a linear way.

To investigate the linear case further, we also decided to compute the minimum
and maximum pixel intensity values for each group in the original image (in the
(R;G;B) channels) and do the same with the radiosity image. Finally, we apply a
linear transformation for each group which rescales the [min;max] interval of the
synthetic image groups to their equivalents in the real image. The result is presented
on the right image of �gure 4.4. The result is more similar to the reference image but
still not satisfactory, even though the reference (synthetic) image is very simple.

194 Samuel Boivin and Andr�e Gagalowicz

Fig. 4.4. Linear solution for camera transfer function.

4.3.2. Non-linear case: Function approximation using histogram mod-
i�cation. Considering that the radiosity image gives the stucture of the image, and
the real one is simply due to the camera transfer function, it is natural to propose
for T () the transformation which maps the histogram of the radiosity image to the
histogram of the reference one. If these two images have the same histogram and the
same structure, they should be similar.

If E1 and E2 are the cumulative distribution function(CDF)[24] of the radiosity
and the real images respectively, we know that the researched T () transform is equal
to E1 Æ E�1

2
.

A pixel intensity is read on the ~x axis from E1 and its corresponding value on the
~y axis is picked. This last value is positioned on the ~y axis of E2; we then read its
corresponding value on the ~x axis of E2 to be used as the new pixel intensity for the
rerendered image.

Fig. 4.5. Radiosity-to-pixel conversion function estimation by histogram modi�cation on all
image (one single function is computed). The left image is the original. The middle image is the
regenerated one, after � convergence and after a CDF transformation has been applied. The right
image corresponds to the case where the histogram modi�cation was perfomed separately for each
group.

The results using this technique are shown in �gure 4.5. The left image is a
reference (natural) image. The middle image is the rerendering result using histogram
modi�cation for T (). Notice that the corrected image by histogram modi�cation is
far from the original. This simply means that the conversion function cannot be
approximated by histogram modi�cation. That was a very surprising result to us
as the histogram modi�cation technique that we implemented, guaranteed that the
both (synthetic and real) histograms are almost equal. We also know that the T ()
transform used is the only one which can perform this histogram modi�cation.

Image-Based Modeling and Rendering 195

As in the linear case, we implemented the histogram modi�cation at the group
level too. The result can be seen on the right image of �gure 4.5. The rerendered image
is much more appealing when compared to the reference one. Some problems appear
in the right panel of the desk and the upper-right corner of the white blackboard. Even
though it is an interesting result, the group transformation cannot be interpreted as
a real camera transfer function. We have to look for a better solution.

In the next section, we show that the best solution to approximate the camera
transfer function is to use a
 correction function.

4.4. Camera transfer function modeled by
 correction function (non-
linear). A simple but eÆcient idea is to approximate the radiosity-to-pixel conver-

sion function by
 correction: T (B) = B
1

 . It has been inspired by Tumblin and

Rushmeier[42] who present some results estimating a conversion function for a better
display of the �nal image computed by the radiosity technique. They propose to use
2:2 as
 value. Nevertheless, we have not limited our algorithm to the research of

inside a restricted interval: our technique �nds the best
 value by minimizing the
error between the original image and the rerendered one as a function of
 only (all
re
ectivity coeÆcients are �xed). The best
 value for our images we obtained is 2:0.

First of all,
 is initialized to 2:2 (see [42]). The algorithms begins to re�ne the best
possible � that create an image synthesis with the smallest possible di�erence from
the original image (see next section to understand how the re
ectances are recovered).
When all � have been recovered, the
 correction function is used again to transform
the radiosities into pixel intensities. The total di�erence between the original image
and the synthetic one (see equation 4.1) is minimized with respect to
 and gives
the best possible rerendered image. A classical gradient method is used to minimize
this error. As the gradient of the mean square error between the pixel values and
T (B�) with respect to
 can be computed analytically (equation 4.2), we use a simple
gradient descent procedure for optimization. A conjugate gradient technique[38] is
also very e�ective as the error function is convex with respect to
. Let us denote the
error Err� for all (i; j) pixel locations and for each � channel by:

Err�(
) =
X
i;j

(I�(i; j)� (B�(i; j))

)2 (4.1)

The derivative of Err�(
) with respect to
 is equal to:

dErr�(
)

d

= �2�

X
i;j

(I�(i; j)� (B�(i; j))

) � (B�(i; j)

� Log(B�(i; j))) (4.2)

A result image using this method is shown in �gure 4.6, with the reference im-
age on the left and rendered image on the right, corresponding to the best (found)
approximation.

4.5. Re
ectance estimation and iterative correction. We �rst investigate
the lambertian case.

4.5.1. Case of perfect lambertian surfaces. As explained in section 4.4, the
radiosity-to-pixel conversion function used for our technique is a
 correction function
with
 = 2:2. When the re
ectances are recovered, we minimize the error between
the two images to �nd an optimum
 as discussed above.

196 Samuel Boivin and Andr�e Gagalowicz

Fig. 4.6. Natural image(left) and rerendered image(right) with an optimum
 determination.

The problem to solve is to invert the radiosity equation 3.2 in section 3.3, where we
know the radiosities of all facets and where we have to �nd the re
ectivity coeÆcients
of these facets and the emittance value of the light sources. When there is more than
one light source, the problem is theoretically underdetermined, as there are more
unknowns than equations. Practically, we restrict this presentation to the case of one
light source. In this case, each equation of type 3.2 is such that � and E always appears
together via the product � � E. The re
ectances can only be evaluated modulo a
scaling factor, so that we can always suppose that E = 1:0 for the light source.

Nevertheless, we have shown in [23] that it is possible to solve the problem of hav-
ing many light sources in the scene, and that the problem is strongly overdetermined
in this case. It comes from the fact that there are many equations of a type �i = �j
for facets i and j made of the same material.

Solving equation 3.2 is much more complicated than it may look, because we need
the radiosities of all facets of the scene and all form factors Fij which is both tedious
and in practice quite impossible to obtain. Therefore we had to implement a non
natural but eÆcient method.

Principle. The principle of our rendering technique is to re�ne the computation
of the surface re
ectances � from a real scene, given its 3D model, the light source
position, the camera(without the transfer function) and an image of this scene.
The technique consists in reading the image and projecting all 3D surfaces on the real
image to compute a �rst approximation of � values. All facets are then rendered with
these photometric parameters and an approximation of the transfer function (i.e.

correction function which is supposed to be �xed) using the fast rendering software
Phoenix and described above. We can now compute the error between the original
image and this synthetic one, group by group. This error is minimized to obtain the
best possible � with the initial constraints.

� extraction from real image. In the process of recovering the � values, one has
to extract pixel intensities from the original image to compute � for a group.

We propose, like Drettakis[14], to compute o�screen index bu�ers using hardware
Z-Bu�ering, except that we apply some �lters to the index bu�er to avoid error
computations. Since we have the 3D geometry of the scene and the camera properties,
we can compute an index bu�er which contains the number of the visible group in the
real image. A hidden-surface bu�er (left image of �gure 4.7) is computed too, and is
used to remove edge matching problems which may occur when the 3D model of the
scene is not perfectly positioned on the real image: a classical edge detector tool in
combination with the two previous bu�ers is employed to suppress object boundaries
and to obtain the �nal bu�er index image (right image of �gure 4.7).

Image-Based Modeling and Rendering 197

Fig. 4.7. Left image: index bu�ers with a speci�c color by group. Middle image: hidden-
surface image. Right image: combination of the the left and middle image, adding an edge detector
to remove positioning problems of the 3D model.

Furthermore, a planar approximation is performed on each facet to avoid local
illumination problems or noise produced by the camera. We only keep half all the
pixels covered by a surface to get its �. Image 4.8 gives the pixels necessary to compute
the �nal averaging.

Fig. 4.8. Filtered pixels in original image using a planar approximation. Only non-black ones
are kept for � computation.

Finally, the combination of the �ltered image (�gure 4.8) and the right image of
�gure 4.7(right) gives the pixels used for the computation of the group re
ectances.
This bu�er is computed once and used at every iteration of the � computation.

� Re
ectances initialization. As we know the transformation T (), the radiosity
associated to each pixel is determined immediately. All the �i re
ectances of a surface
i are initialized by the pixel average of the image area obtained by the projection, on
the original image, of all object surfaces belonging to the group i (see equation 4.3).
This means that the � values are computed for an object group and then, propagated
to the object surfaces.

�i =
1

n

nX
j=1

(Pi;j)

 (4.3)

Fig. 4.9. Average � estimation for a group.

198 Samuel Boivin and Andr�e Gagalowicz

Error computation and � correction. We can obtain a new image using the pre-
viously described technique (initialization phase for �). It is compared to the original
one by computing an object error estimate ":

"j =
dPorgjdPnewj

) (4.4)

where dPorgj is the mean of the �ltered pixels covered by the projection of object j in

the real image and dPnewj
is the mean of the �ltered pixels covered by the projection

of the same object in the synthetic image.
As �j and B̂j the average radiosity of object j are proportional (see equ. 3.2), the

readjustment of �j is such that
�jk+1
�jk

=
dBorgj

dBjk

, where �jk is the re
ectivity of object

j at iteration k and dBjk is the average radiosity of object j at iteration k.
In order to suppress biases created by small objects having important errors, it

is possible to correct the �i value for the group i in the next iteration by:

�dik+1 = �dik � "i = �dik �

niX
j=1

f("j)("j � mj)

niX
j=1

f("j)mj

| {z }
6=0

(4.5)

with f("j) =

8>>>>>><
>>>>>>:

0 if "j � 2minni("j) �

2
666641 +

maxni("j)�minni("j)

maxni("j) +minni("j)| {z }
spread criteria

3
77775 ;

1 otherwise.

(4.6)

k is the iteration number;cKi the total error between the synthetic image and the original one, for group i;cKj the total error between the synthetic image and the original one, for object j;
ni the number of objects for group i;
Kj , the error for object j;
maxni(Kj) the maximum error for all n objects;
minni(Kj) the minimum error for all n objects;
mj the number of pixels in the projection of object j.

This correction gives us new � values allowing to compute a new image synthesis.
The new obtained image is compared, by the same process to the original one. The
algorithm iterates the � correction until a user-de�ned threshold has been reached.
The right image of �gure 4.10 has been computed using this technique.

Case of perfect specular surfaces. We now present an extension of this method
to the scenes which contain some perfect specular surfaces (perfect mirrors). These
perfect specular surfaces have a specular re
ectance �s initialized to 1:0 and no di�use
re
ectance(�d = 0). During the pure rendering process, if a specular surface is

Image-Based Modeling and Rendering 199

Fig. 4.10. Left image is the original one. Middle image is the �nal result of the � conver-
gence after only three rerendering iterations. Right image is the di�erence between the real and the
synthetic image, where the darkest areas correspond to the largest error areas.

reached, then the received energy is redistributed following the same solid angle as the
incident one, using Descartes'law. This behaviour is di�erent from perfect lambertian
surfaces which send a constant energy in all directions of the space.

If we apply the former lambertian analysis to such a scene, perfect di�use surfaces
will be rather well reconstructed but it is not the case of the specular ones, which
produce important errors all over the surface. This situation is detected automatically
comparing once again the original image with its lambertian synthesis. Then, the
algorithm treats these mirrors as perfect specular re
ectors (the �s of these surfaces
is then equal to 1:0 and �d = 0).

At this stage of the method, it is important to note that the specularity property
of the surface gives us an important feature: considering the virtual viewpoint which
is the symmetrical of the real viewpoint with respect to the mirror plane, the mirror
facet becomes a virtual screen (not a rectangle in general) where the 3D scene is
projected. Here we suppose that the part of the 3D scene seen from this virtual
viewpoint (and restricted to the specularity volume) is lambertian (if it is not the
case, our procedure may produce errors). From here, we have a screen image, a
3D model of a purely lambertian sub-scene; so we can apply the former lambertian
procedure described above. In fact, we still use the index bu�ers to recover the index
values, but we chose to use ray-tracing to compute them. This gives us the possibility
to analyze the re
ectance of the di�use objects that are projected onto the mirror.
Following the properties of the surface reached by the re
ected ray, we compute its
di�use properties by averaging the pixels it covers on the mirror (or we could send a
ray again if it is a specular surface too). This technique has been used to generate
the middle image of �gure 4.11.

Case of colored specular surfaces. The case of colored specular surfaces is very
close to that of perfect ones, except that we allow for �s to be di�erent from 1:0 for
all wavelengths. The idea is to compute the error in a manner similar to the perfect
di�use case. This error is then used to correct the �s of the specular surface, instead
of the �d for the di�use ones.

A new image synthesis is then computed using the new �s and the global error
on the specular objects is reestimated again. If this error is still large, we consider
that this surface presents more complex photometric properties (partially di�use and
specular, including complex BRDF like isotropic and anisotropic ones); we call these
surfaces glossy.

200 Samuel Boivin and Andr�e Gagalowicz

Fig. 4.11. The original image is on the left. The middle one is the result of the � convergence
after only 3 rerendering iterations with specular processing. The right image is the di�erence between
the real and the synthetic image, where the darkest areas correspond to the biggest errors.

Case of glossy surfaces. This is clearly the most complicated case. In the glossy
case, we need to use a more complicated technique to recover photometric properties.
To simulate these particular re
ections, we use aWard re
ection model [44], because it
incorporates anisotropic re
ection properties, which are not simulated by the Phong
model. The procedure also consists in directly recovering the anisotropic direction
from real images. We then minimize the error between the original surface pixels and
those produced by the Ward model as a function of �x and �y (rugosity coeÆcients
in Ward model). This cases will be described in more details in future publications.

Use of rerendered image in applications. Our image-based rendering method has
found a lot of possible applications, especially in augmented reality (see images 4.12),
post-production software and web merchandising, because of its simple technique and
its small number of required data. Indeed, it gives the opportunity to only use a
3D geometric model and one single image on-line, no BRDFs or texture maps are
needed. Phoenix does the rest, recovering re
ectance parameters and regenerating
a new synthesis image very close to the original one, and with all its advantages
(viewpoint changes, adding objects, etc.).

Fig. 4.12. Some augmented reality scenes using Phoenix with viewpoint change (left), adding
ellipsoidal specular object (middle) and with new specular properties for the white blackboard (right).

5. Conclusion. We presented an original image-based rendering technique which
is very fast and which generates photorealistic images, using a restricted set of data.
It does not yet take into account glossy surfaces, which are still under study. It
would be interesting to extend future research to the case of textured surfaces or of
participating media.

Image-Based Modeling and Rendering 201

REFERENCES

[1] A. Ackah-Miezan and A. Gagalowicz, Energy Minimizing Segmentation of an image, in
proceedings of International Symposium on Computer and Information Science, ISCIS
VII, Antalya, Turkey, 1992, pages 631-634.

[2] A. Ackah-Miezan and A. Gagalowicz,Discreet Models for Energy Minimizing Segmentation,
in proceedings of the 3rd International Conference on Computer Vision, Berlin, BRD, May
1993, pages 200-207.

[3] A. Appel, Some Techniques for Shading Machine Renderings of Solids, in proceedings of the
Spring Joint Computer Conference, 1968, pages 37-45.

[4] D.R. Baum and J.M. Winget, Real time radiosity through parallel processing and hardware
acceleration, in Computer Graphics (1990 Symposium on Interactive 3D Graphics) 24(2),
March 1990, pages 67-75.

[5] S. Boivin and L. Doghman, A rendering method for the realistic simulation of natural scenes,
in proceedings of IMAGE'COM 96, Arcachon, France, 1996, pages 302-307.

[6] L. Carpenter, The A-Bu�er, an antialiased hidden surface method, in proceedings of ACM
SIGGRAPH 84, 18(3), July 1984, pages 103-108.

[7] E. Catmull, A Subdivision Algorithm for Computer Display of Curved Surfaces, Ph.D. Thesis,
Report UTEC-CSc-74-133, Computer Science Department, University of Utah, Salt Lake
City, UT, December 1974.

[8] M. Cohen and D.P. Greenberg, The hemi-cube: A radiosity solution for complex environ-
memts, in proceedings of ACM SIGGRAPH 95, 19(3), August 1985, pages 31-40.

[9] M. Cohen, S.E. Chen, J.R. Wallace and D.P. Greenberg, A progressive re�nement ap-
proach for fast radiosity image generation, in proceedings of ACM SIGGRAPH 88, 1988,
pages 75-84.

[10] M. Cohen, J.T Wallace, P. Hanrahan and D.P. Greenberg, Radiosity and Realistic Image
Synthesis, Book published by Academic Press, 1993, pages 109-130.

[11] P.E. Debevec, C.J. Taylor and J. Malik, Modeling and Rendering architecture from pho-
tographs: a hybrid geometry and image-based approach, in proceedings of ACM SIG-
GRAPH 96, 1996, pages 11-20.

[12] P.E. Debevec and J. Malik, Recovering High Dynamic Range Radiance Maps from

Photographs, in proceedings of ACM SIGGRAPH 97, 1997, pages 369-378.
[13] P. Debevec, Rendering Synthetic Objects into Real Scenes: Bridging Traditional and Image-

Based Graphics with Global Illumination and High Dynamic Range Photography, in pro-
ceedings of ACM SIGGRAPH 98, 1998, 199-206.

[14] G. Drettakis, L. Robert and S. Bougnoux, Interactive Common Illumination for Com-
puter Augmented Reality, Rendering Techniques '97, J. Dorsey, P.Slusallek (eds), Springer-
Verlag, Wien (Proc. 8th Eurographics workshop on Rendering, Saint-Etienne, France),
1997, pages 45-56.

[15] F. Durand, Visibilit�e tridimensionnelle: �etude analytique et applications, Th�ese de l'universit�e
Joseph Fourier, Grenoble, Juillet 1999.

[16] F. Durand, G.Drettakis and C. Puech, The visibility skeleton: a powerful and eÆcient
multi-purpose global visibil= ity tool, in proceedings of ACM SIGGRAPH 97, 31(3A),
August 1997, pages = 89-100.

[17] O. Faugeras and M. Hebert, The representation recognition and locating of 3D objects, in
International Journal of Robotics Researc, 5(3), 1986.

[18] A. Fournier, A.S. Gunawan and Chris Romanzin, Common illumination between real and
computer generated scenes, in proceedings Graphics Interface'93, Morgan Kaufmann pub-
lishers, 1993, pages 254-263.

[19] H. Fuchs, Z.M. Kedem and B.F. Naylor, On Visible Surface Generation by a Priori Tree
Structures, in proceedings of ACM SIGGRAPH 80, 1980, pages 124-133.

[20] A. Gagalowicz, Cooperative Computer Vision and Computer Graphics, Invited Paper, in
proceedings of the AFCET conference, Paris, 1989, pages 1727-1758.

[21] A. Gagalowicz, L. Vinet, Region matching for stereo pairs, in proceedings of the sixth Scan-
dinavian Conference on Image Analysis, Oslo, 1989.

[22] A. Gagalowicz, Collaboration between Computer Vision and Computer Graphics, in proceed-
ings of the ICCV'90 Conference, Osaka, Japan, 1990.

[23] A. Gagalowicz, Modeling Complex indoor scenes using an analysis/synthesis framework,
Chapter of the book Data Visualisation, Rosenblum editor, published by Academic Press,
1994.

[24] R.C. Gonzales and R.E. Woods, Digital Image Processing, Book published by Addison Wes-
ley, 1992.

202 Samuel Boivin and Andr�e Gagalowicz

[25] C.M. Goral, K.E. Torrance, D.P. Greenberg amd B. Bataille, Modeling the Interaction
of light between di�use surfaces, in proceedings of ACM SIGGRAPH 84, 18(3), July 1984,
pages 212-222.

[26] H. Gouraud, Continuous Shading of Curved Surfaces, IEEE Transactions on Computers, C-
20(6), June 1971, pages 623-629.

[27] E. Grimson, Object Recognition by Computer, Book published by MIT Press, 1990.
[28] E. Haines and J. Wallace, Shaft culling for eÆcient ray-traced radiosity, in proceedings of

the Second Eurographics Workshop on Rendering, Barcelona, Spain, 1991.
[29] G.M. Hunter, EÆcient Computation and Datda Structures for Graphics, Ph.D. Thesis, De-

partment of Electrical Engineering and Computer Science, Princeton University, Princeton,
NJ, 1978.

[30] D.C. Kay, Transparency for Computer Synthesized Images, M.S. Thesis, Progran of Computer
Graphics, Cornell University, Ithaca, NY, January 1979.

[31] C. Loscos, M. Frasson, G. Drettakis, B. Walter, X. Granier and P. Poulin, Interactive
Virtual Relighting and Remodeling of Real Scenes, Rendering Techniques '99, G. Larson, D.
Lischinski (eds), Springer-Verlag, Wien (Proc. 10th Eurographics workshop on Rendering,
Granada, Spain), 1999.

[32] V. Mehas-Yedid, J.P. Tarel and A. Gagalowicz, Calibration m�etrique faible et construction
interactive de mod�eles 3D de sc�enes, in proceedings of RFIA, Paris, France, January 1994,
pages 121-133.

[33] M.E. Newell R.G. Newell and T.L. Sancha, A Solution to the Hidden Surface Problem, in
proceedings of the ACM National Conference, 1972, pages 443-470.

[34] A. Ng, Techniques for Rapid Computation of Form Factors in Radiosity, Technical Report No
680, Department of Computer Science, Queen Mary And West�eld College, 1994, Univer-
sity of London.

[35] B.T. Phong, Illumination for computer generated pictures, Communications of the ACM,
18(6), 1975, pages 311-317.

[36] M. Sbert, An integral geometry based method for form-factor computation, Computer Graphics
Forum, 12(3), 1993, pages 409-420.

[37] V. Serfaty, A. Ackah-Miezan, E. Lutton and A. Gagalowicz, Photometric Analysis as an
aid to 3D Reconstruction of indoor scenes, in proceedings of the IS and T/SPIE Symposium
on Electronic Imaging: Science and Technology, 1993.

[38] J. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain,
Technical Report CMU-CS-TR-94-125, Carnegie Melon University, 1994.

[39] R. Siegal and H.R. Howell, Thermal Radiation Heat Transfer, Book published by Taylor
and Francis, 1993.

[40] F. Sillion and C. Puech, A general two-pass method integrating specular and di�use re
ec-
tion, in proceedings of ACM SIGGRAPH 89, 23(3), July 1989, pages 335-344.

[41] J.P. Tarel and A. Gagalowicz, Calibration de cam�era �a base d'ellipses, in Traitement du
Signal, 12(2), 1995, pages 177-187.

[42] J. Tumblin, and H. Rushmeier, Tone Reproduction for Realistic Images, in IEEE Computer
Graphics and Applications, 13(6), November 1993, pages 42-48.

[43] J.M. Vezien and A. Gagalowicz, Reconstruction 3D bas�ee sur une analyse en r�egions d'une
paire st�er�eoscopique, in proceedings of the eighth RFIA Conference, Lyon, France, Novem-
ber 1991, pages 649-660.

[44] Gregory J. Ward, Measuring and Modeling Anisotropic Re
ection, in proceedings of ACM
SIGGRAPH 92, 1992, pages 265-272.

[45] J. Warnock, A Hidden-Surface Algorithm for Computer Generated Half-Tone Pictures, Tech-
nical Report TR 4-15, NTIS AD-753 671, Computer Science Department, University of
Utah, Salt Lake City, UT, June 1969.

[46] H. Weghorst, G. Hooper and D.P. Greenberg, Improved Computational Methods for Ray
Tracing, in ACM Transactions on Graphics, 3(1), January 1984, pages 52-69.

[47] T. Whitted, An Improved Illumination Model for Shaded Display, Communications of the
ACM, 23(6), June 1980, pages 343-349.

[48] Y. Yu, P. Debevec, J. Malik and T. Hawkins, Inverse Global Illumination: Recovering
Re
ectance Models of Real Scenes from Photographs, in proceedings of ACM SIGGRAPH
99, 1999, pages 215-224.

[49] Y. Yu and J. Malik, Recovering Photometric Properties of Architectural Scenes from Pho-
tographs, in proceedings of ACM SIGGRAPH 98, 1998, pages 207-218.

