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This thesis approaches the problem of non-photorealistic rendering by identifying seg-

ments in the image plane and filling them using algorithms to render in artistic styles.

Using segments as a 2D primitive for non-photorealistic styles is a natural extension

of techniques artists often implicitly employ for purposes such as abstraction of unnec-

essary detail. The problem of segmenting an arbitrary 3D scene in a 2D view using

geometric scene information is presented, and a solution based on spectral clustering

is proposed. With an acceleration technique, segmentation can be performed in near

real-time for interactive, artistic environments. This approach is automatic beyond the

setting of segmentation parameters by a user, and it can be extended to temporally coher-

ent non-photorealistic animation by segmenting adjacent frames together. A number of

artistic rendering styles are applied within this segmentation framework to demonstrate

the effects that such a system makes possible.
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Chapter 1

Introduction

“I may seem to be passionately concerned with the ‘hows’ of represen-

tation, how you actually represent rather than ‘what’ or ‘why’. But to

me this is inevitable. The ‘how’ has a great effect on what we see. To

say that ‘what we see’ is more important than ‘how we see it’ is to think

that ‘how’ has been settled and fixed. When you realize this is not the

case, you realize that ‘how’ often affects ‘what’ we see.”
– David Hockney

Visual art is one of the most expressive forms of communication available. Even a

novice can create simple drawings that tell a compelling story through little more than

a collection of rough strokes that suggest a certain character. Such subtle messages to

a viewer are lost in precise photorealistic renderings that preserve physical appearance

alone. Some of the first marks left by early humans that survive today still evoke feeling

and emotion, even if the original intention of the artist is no longer known. While the

ability to produce expressive art comes almost naturally to people, it is still a significant

problem to design automatic computational algorithms that produce a wide variety of

artistic styles without a great deal of human intervention.

1.1 Motivation

Non-photorealistic rendering (NPR) algorithms have been developed both to emulate

existing styles of traditional art as well as to allow one to create novel forms of artistic

imagery. One interesting use of NPR is to generate artistic renderings from 3D scenes,

as opposed to generating renderings based on 3D images. There are a number of ad-

1



Chapter 1. Introduction 2

vantages to this approach. For example, rich information can be computed from a 3D

scene that might be difficult or impossible to extract from only pixel color information.

Moreover, it gives a user the ability to easily generate stylized views of a scene from many

different camera orientations. With some degree of frame-to-frame coherency, even non-

photorealistic animation is possible. This can give artists the ability to easily generate

motion in styles that are otherwise nearly impossible to animate by traditional means.

Another interesting use for non-photorealistic animation from 3D scenes is that it can

allow an artist to quickly see the effects of rendering a clip in novel styles with little or no

additional work. The use of 3D environments also suggests interactive applications, such

as games that allow a user to freely explore an artistic world. Finally, any insights gained

from designing NPR for 3D might give clues to what techniques are worth pursuing for

rendering based on only 2D information.

There is considerable interest in artistic rendering outside of the research community.

NPR can be found more and more often in the entertainment industry. Scenes or objects

are commonly composited into hand-animated cartoons with cell-style shading and out-

line contours to emulate the style of manually drawn work, such as in the television series

Futurama [42] and Invader Zim [89]. Simple NPR effects are typical in many modern

video games as well, with examples of toon shading and contour lines in Jet Set Radio

Future [87], Robotech: Battlecry [68], Auto Modellista [14], and countless others. These

techniques are fairly straightforward, as the medium encourages simple styles that are

not difficult to emulate algorithmically. However, applying artistic rendering algorithms

directly to models can result in out of place elements, despite their similar appearance

to other hand-drawn elements. For example, motion can be disturbing because it is easy

to apply rotations that are more often avoided when animated traditionally on a budget.

NPR is finding its way into big budget movies, such as Disney’s animated Tarzan [13],

which uses a system to allow animation through digitally painted backgrounds. Richard

Linklater’s Waking Life [61] and, more recently, A Scanner Darkly [60] are rotoscoped,
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with a proprietary software system to help animators produce animation from video. Al-

though NPR has been applied in the real world with varying degrees of success, there are

many experimental styles of animation that are quite challenging to capture with cur-

rent automatic techniques. Examples include oil painted short animations by Georges

Schwizgebel, such as L’homme sans ombre [84], and Alexander Petrov’s animated paint-

ing adaptation of Hemingway’s The Old Man and the Sea [75]. Most existing systems,

such as those described here, are very simple or require a great deal of interaction with

an artist. An exciting area for new work is to design algorithms that automatically pro-

duce artistic renderings. Such a system should be capable of real-time interaction, and

it should emulate artistic techniques that existing systems are not able to capture. The

next section examines many varied styles of art to find a common theme that will form

the basis of our system.

1.2 Inspiration

An obvious place to look for motivation in designing novel NPR techniques is existing

art produced by traditional artists. Furthermore, guidance from artists who are familiar

with current work in NPR can provide valuable insight into what is lacking in the field.

1.2.1 Segmentation in Art

Examples of the use of segmentation in art are not at all difficult to find, although in

some cases it can be subtle. When searching specifically for examples of segmentation

in art, one can find a range of applications. Segmentation can appear as part of the

process of turning a concept into a finished piece of art. In Figure 1.1, the artist models

a watercolor painting after a photograph of a tree. In the first stage of painting shown, it

is clear that objects are blocked out to be handled with separate washes of paint, as in the

second stage pictured. In the final stage shown, the tree in the foreground still has much



Chapter 1. Introduction 4

Figure 1.1: Stages of producing a watercolor painting based on a photograph (left), from

[74]. Details in the branches, leaves, grass, and background are abstracted away with

larger washes that suggest detail without explicitly reproducing it.

of the detail of its leaves and branches abstracted away—it would be tedious for the artist

to reproduce every small feature of the tree, and it would likely be visually cluttered to

do so. The forest in the background is abstracted away into a single segment, as a wash

that flows from one side of the painting to the other. In some areas of this painting, it is

difficult to say where one segment ends and another begins, but segmentation certainly

played a role in the creation of this piece, and its effects can be seen in the final result.

(a) Wayne Thiebaud’s Around the Cake (oil on
canvas, 1962).

(b) Manually highlighted segments in the painting.

Figure 1.2: Segmentation is based on object features, with strokes built up more heavily

around segment boundaries.

Segmentation in art is not limited to watercolor paintings or scenes of nature where

there is a great amount of detail for the artist to deal with. Figure 1.2 shows a relatively
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(a) Golden City by Pat Duke (digital painting, 2004). (b) Detail of the skyline.

Figure 1.3: Buildings in the background become less detailed and merge together into a

single skyline.

simple scene of a cake and slices of cake on plates, made up of only a few fairly regular

geometric shapes. Despite the apparent simplicity in the scene, the choice of stroke

orientations and texture gives the painting considerable character. Here, the use of

segmentation is not only in abstracting away detail, but it is also employed as a stylistic

tool, partly due to the medium used.

In Figure 1.3, the artist used segmentation subtly to suggest depth by removing

features from buildings that are further from the viewer. However, this reveals another

use of segmentation, as detail is not only removed from buildings, but buildings merge

together to share shading and a single outline in the background.

A compelling use of segmentation for artistic effect can be seen in Figure 1.4. The

artist has merged much of the figure with the background to achieve a unique effect, with

each segment primarily a single color, but with texture due to the screenprinting process.

Contours between segments increase visual legibility of the segments.

Examples of segmentation can be found in ancient art as well. The black figure style

of decorating pottery in Archaic Greece makes use of a clear segmentation of the depicted

figures and features. Objects are painted with a black slip over the natural red color of

the clay as a first step. Details are then etched in the black areas with a needle, and other
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Figure 1.4: Andy Warhol’s Lenin Red (screenprint, 1987). Few segments are used for

artistic effect.

pigments may be added to bring out certain features. The technique creates an effect of

striking contrasts, with segments shaded in a single color and separated by the etched

contour lines. The constant shading of each segment also suggests a sense of flatness and

2D design similar to that of modern animation. The red figure style developed later but

used the same technique of decorating pottery. The main differences in this style are that

it reverses the use of slip to indicate background regions instead of foreground features

and details are painted rather than etched. The sense of segmentation is just as strong

with this approach. 1.5 shows pieces characteristic of each style of art.

Finally, segmentation has been employed by artists to vary detail over time in an-

imation. Figure 1.6 shows a sequence of five frames from an animation where a small

town starts in the distance in the initial frame. As the camera draws closer, more detail

becomes visible and shapes become more precise. Buildings evolve from a vague collec-

tion of shapes to clearly defined structures, and details such as windows appear on the

faces of the structures. Similarly, human figures are not rendered until they are within a

reasonable distance to the viewer.
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Figure 1.5: Left: The Recovery of Helen by Menelaos, attributed to Lydos (black figure

plate, ca. 560-540 B.C.). Right: Zeus Chasing Ganymede, signed by Douris (red figure

cup, ca. 480 B.C.).

Figure 1.6: Frames from Georges Schwizgebel’s animation, L’homme sans ombre (oil and

acrylic on cells, 2004). As the viewpoint approaches the town, more detail is painted.

1.2.2 Applications of Segmentation

When corresponding with professional illustrator and animator, Pat Duke [29], whose

work includes animating for A Scanner Darkly, he noted that the most important problem

he identifies with automatic NPR systems is the following:

Level of Abstraction Detail: This is simply an acknowledgment of a tra-

ditional artistic convention: artists do not use the same level of abstraction

throughout an entire image. To aid in reading a painting, for instance, some

elements need to be slightly clearer and more detailed than others. Likewise,
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elements of the image which are unimportant can easily be more abstracted—

this helps to focus the viewer on what’s really important.

This sentiment is reflected in literature on the subject as well. In Understanding Comics

[66], artist Scott McCloud explores the importance of segmentation in animation and

sequential art as a tool for identifying with viewers. Santella and DeCarlo [83] justify the

use of abstraction in NPR based on experiments with eye tracking data, and they give a

thorough discussion of the merits of abstraction. They found that viewers tend to spend

more time looking at regions that have been abstracted less in artistic renderings, which

suggests that abstraction can be used by an artist or NPR system to guide attention to

more important regions of an image.

The previous examples have illustrated various ways in which image segmentation is

used by artists to achieve abstraction of detail. While there are many other ways an artist

may choose to abstract detail, the range of possible abstraction effects that segmentation

makes possible indicate that it is a flexible and useful tool for abstraction. Hence, it is

reasonable to approach the detail abstraction problem as an image segmentation problem.

Applications of segmentation in art other than abstraction of unnecessary detail may be

identified from these examples as well. Image segments can create a sense of 2D layout

and design, freeing NPR techniques from tightly relying upon 3D content. This can be

especially important in animation, where 3D geometry allows animators to create scenes

that at times do not feel right, because of the conflicting visual cues of NPR techniques

that mimic 2D animation but are rendered on precise 3D geometry. Also, an appropriate

segmentation can make the process of producing a piece of art much more efficient, as

some segments can be filled with simply a single stroke or wash. Finally, in some styles,

segmentation is a consequence of the nature of the medium, such as in batik, woodblock

printing, and cartoons, or even in cases such as oil painting, where the artist might build

up paint around segment boundaries by being more careful with the strokes. While an

artist may not be explicitly aware of the segmentation that results from higher level
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artistic processes, it is evident that segmentation can serve a number of useful purposes,

which would account for why it can be found in such diverse styles of art.

1.3 Contributions

This thesis presents 2D image segments as a primitive for NPR techniques, which can

be applied by rendering artistic styles within the segments of a scene. For this purpose,

a general, automatic, and fast approach to segmentation from 3D scene information is

developed, based in spectral graph clustering techniques from the fields of data cluster-

ing and machine vision. Various simple artistic styles that work within this framework

of scene segmentation are presented, some of which would be difficult or impossible to

develop without an explicit notion of segmentation. The possibility of applying segmen-

tation over a sequence of frames for animation is also explored and evaluated. A strategy

of generating frame-to-frame coherence for segments in animation is presented, which is

critical for obtaining acceptable animation.



Chapter 2

Background

“Art is dangerous. It is one of the attractions: when it ceases to be

dangerous you don’t want it.”
– Anthony Burgess

Non-photorealistic rendering has matured as a field in its own right in the past 15

or so years, while image segmentation has been of interest in computer vision for quite

some time. Before we consider a general segment-based approach to NPR, it is ben-

eficial to examine previous related work. This chapter reviews artistic rendering and

introduces algorithms for image segmentation. First we review approaches to artistically

rendering scenes consisting of 3D models using pen-and-ink and painterly methods. We

then evaluate other systems that use segmentation as part of the NPR process. Existing

approaches to artistic animation and interfaces for NPR systems are also mentioned.

Finally, we compare various data segmentation algorithms.

2.1 Non-Photorealistic Rendering

A wide range of techniques have been developed for rendering scenes in artistic styles. A

general overview of several techniques is given in [57]. Some image-based algorithms rely

solely on pixel data, while other approaches generally work based on 3D scene geometry

specified by an artist. Many broad approximations to styles of art are possible, including

painterly and pen-and-ink styles. This section presents an overview of many current

techniques for generating artistic renderings and animation relevant to this work.

10
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2.1.1 Painterly and Pen-and-Ink Rendering of 3D Scenes

Some of the earliest work that approached NPR directly as a means to produce artistic

effects using computer renderings includes work by Haeberli [43], which focuses on image-

based techniques, such as producing simple painting-like images from photographs, but

the author notes that NPR based on raytracing gives one considerably more information

about a scene, such as surface normals and depth. This is a fact we will exploit by basing

our NPR system on 3D scenes rather than photos or video.

There has been considerable interest in pen-and-ink illustration techniques, which

produce artistic renderings of scenes using only black strokes on a white background

[31, 48, 81, 94]. Shading is produced in these cases by building up more strokes in darker

areas and employing hatching where appropriate. Strokes can also be used to convey

shape by using surface curvature information. Some pen-and-ink illustration techniques

are appropriate for real-time interaction by preprocessing models [32].

Meier produced some of the earliest painterly renderings from 3D scenes, which use

a brush texture painted on particles stuck to the surface of objects [69]. Additionally,

reference images such as color, stroke orientation, and stroke size are used to determine

properties of the rendered brush strokes. While the technique is conceptually simple, it

produces some pleasing results. More convincing painterly effects have been generated

by modeling longer, curved strokes [45] and, further, embossing painted strokes to give

the painting a feeling of depth [46]. These approaches were applied only to color images,

but they could also näıvely be used to paint rendered 3D scenes. Complicated physical

models for watercolor simulations are also possible [23], if a proper model for applying

brush strokes and washes to a 3D scene is developed.

These systems are largely complementary to that presented in this work—they mainly

describe various rendering styles, whereas here we describe techniques for automatically

assigning styles to different parts of a scene. Next, we examine more closely techniques

that either produce a segmented appearance or explicitly employ segmentation as part
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of the rendering process, then we review contour rendering and user interaction in NPR.

2.1.2 Segmentation in Artistic Rendering

There has been work in using segmentation as a component of some NPR techniques,

whether explicitly approached as such or not. Many image-processing operators, such as

posterization, anisotropic diffusion, and vector quantization yield painterly effects with

a segmented appearance.

Decorative mosaics can suggest underlying segmentations by changing the orientation

of tiles to match contour edges and varying tile color and size gradually within regions

[44]. Layering artistically rendered areas can also lead to a segmented appearance [23, 65].

Some media which are naturally segmented, such as batik, can only be simulated well by

modeling regions of different colors, due to the physical processes involved in dying the

cloth [97]. Levin et al. [58] propose a method of automatically coloring grayscale images

based on color hints provided by a user, which gives a segmented appearance; and, in

fact, they note that their cost function is minimized by the segmentation cost function

we will use in Chapter 3 under different constraints.

Recently, a number of authors have directly used image segmentation algorithms for

NPR. DeCarlo and Santella [26] create abstracted image representations based on image

segmentation, using eye-tracking data to determine where more detailed segmentation is

needed. Each segment is smoothed and rendered as a solid color with occasional edge

strokes. Gooch et al. [39] segment an image into very small regions and fit a single paint

stroke to each region. Bangham et al. [5] use scale-space filters to attempt to preserve

important edges in photographs, then each segment is rendered with a solid color. All of

these papers produced very high-quality, appealing results; however, most of the effort in

these has gone into obtaining usable segmentations for NPR. As a result, each provides

only a small number of rendering styles, if any more than one specific style; and these

styles are tightly coupled to the result of segmentation.
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This work is different from these previous efforts in three ways. First, the segmenta-

tion algorithm used here is deigned for rendering 3D scenes, incorporating 3D geometric

information. Second, segmentation is approached as a general primitive for artistic ren-

dering, rather than being tied to a specific style. Third, most of the previous systems use

some form of user intervention to produce each image or video. In contrast, the system

described in Chapter 3 requires a user to author a 3D scene and rendering style, or use

those already available, but it can then automatically render arbitrary new views.

2.1.3 Contour Rendering

Since we enhance contour rendering using segmentation, it is helpful to review current

approaches to this NPR technique. Contours, sometimes called silhouettes, are curves

drawn to convey shape of objects by marking edges between visible and backfacing parts.

Here, we will follow the convention of calling these curves contours, while the term

silhouette is used to denote curves following outlines of objects that separate them from

the background or other distinct objects behind them. A good overview of contour

rendering techniques that goes into more detail than we do here is available in [50], but

note their definitions of contour and silhouette are reversed from what we use.

Contour rendering has its roots in some of the earliest computer graphics work. In

1967, Arthur Appel introduced contour rendering [3]. Although this work focuses on

hidden line removal, it does present some compelling, yet very simple scenes rendered

with contour lines drawn. It even goes so far as to allow some special tagged edges,

such as creases, to be drawn to increase readability of the image. In 1990, Elber and

Cohen [33] developed hidden line removal algorithms for nonuniform rational B-spline

surfaces, producing very literal outlined renderings of models that only hint at future

artistic applications. Early research in contour rendering as an artistic device can be

traced to another work presented in 1990, where Saito and Takahashi [80] increase the

visual legibility of rendered objects by using contour lines. In this case, the authors rely



Chapter 2. Background 14

on a number of rendered reference images to produce simple artistic effects, with contour

edges being computed directly from a depth image. While this approach is simple and

often effective, there are some shortcomings to it. Cases such as a nearly flat object

that crosses itself in the image can result in a depth image with very little variation

at the crossing. Consider a model of a ribbon, for example. This will cause the edge

at the crossing to not be detected. Also, such an image-based method makes accurately

detecting contour chains more difficult. A contour chain is a set of adjacent contour edges

that can be viewed as a single, long curve for placing stylized strokes. Without these,

the range of stylization possible on contours is very limited. However, the depth-image

based algorithm is fast and conceptually simple, making it a good first step in contour

rendering.

A fast object space algorithm for finding contour edges of polygonal meshes as part

of an artistic rendering system is first presented in [64], which essentially makes some

improvements to Appel’s earlier algorithm. This approach is somewhat complicated, since

it works directly on models rather than reference images, but it overcomes problematic

cases that can occur otherwise, and it directly gives one contour chains. Most modern

work in contour rendering relies on finding contour curves in object space rather than

image space [12, 25, 51, 53, 71], as this gives more reliable results, and contours chains

can be used to produce effects evocative of different media. For example, the usual

solid lines that represent contours can be replaced with textures that appear to give

a wavy hand drawn appearance or painted brushed strokes. Furthermore, with object

space contours, more nuanced decisions about what to do with visibility information may

be made—hidden contours can be rendered in a different color, or as dashed lines, for

example.

There are a couple of problems that can arise by directly rendering all contours of

an image. First, very detailed scenes can become a mess of dense contours, making it

difficult or impossible to tell what an image is supposed to represent in the first place.
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Second, it is sometimes computationally prohibitive to model all the detail necessary in

a scene to get the contours desired by an artist. Examples of such detail are shingles,

bricks, or leaves. Often, solving this second problem by explicitly modeling all the detail

necessary leads right back to the first problem of cluttered scenes.

Work in resolving the issues of complexity in contour renderings can be traced back

to work by Appel in 1979 [4], where contour lines are haloed as illustrators often do to

increase readability of complicated scenes. This just means than important curves can

have some safe perpendicular distance within which no other features will be drawn,

to help bring them out of the image. However, complexity reduction has not been

approached to increase artistic effect until recently.

Work in pen-and-ink illustration is closely related to contour rendering, as pen-and-

ink techniques presented by Winkenbach and Salesin [94] can be used to create the

appearance of detailed contours on architectural renderings, even when such detail is

not actually modeled as geometry. Elber [30] demonstrates pen-and-ink techniques with

isoparametric curves that can have more detail focused around contour areas, creating

an outlined appearance even though no contours are explicitly modeled. Beyond this,

the clutter problem is addressed with procedural textures that can omit detail to better

match target tones. This approach is limited mainly to large, regular surfaces, such as

brick walls and the like.

Deussen and Strothotte [27] focus on the specific problem of rendering trees, which

can be a source of complexity in contour strokes due to the number of leaves that would be

necessary to model a convincing tree. They use depth discontinuities to determine where

leaves are needed, which are modeled with abstract modeling primitives that attempt

to match target tone by drawing more in areas of shadow and visual abstraction by

scaling primitive size with distance. While the results are promising, they require explicit

modeling of the entire tree, and they are also very domain specific. Another approach

is to use graftals [56], which do not require an artist to explicitly model every leaf, and
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they can also be applied to other complex models, such as fur or grass. Still, this solves

a very specific problem of rendering complexity with contours that is not applicable to

many domains.

More recently, Wilson and Ma [93] used a complexity map and several view depen-

dent renderings to find regions of high stroke density for simplification in pen-and-ink

renderings. The complexity map in this instance is a blurred rendering of the scene with

all contours drawn, which is used to determine where there is a high degree of clutter,

and this is used to attempt to match contour density to target tones, similar to the ap-

proach of [27]. Grabli et al. [40] also use such a measure of a priori density, and their

work keeps track of stroke orientations and causal density created by drawing strokes to

produce more regular appearing contour renderings.

Most current general approaches to rendering contours on complex scenes rely on

keeping track of some form of explicit stroke density measure. Such an approach is

compatible with the system we propose, but Chapter 5 proposes an alternative strategy

to complexity reduction in contour rendering based on segmentation.

2.1.4 Non-Photorealistic Animation

There are a number of problems unique to non-photorealistic animation, due largely to

frame-to-frame coherency issues and the amount of manual work that can be necessary

to produce animation. Many of the efforts in NPR address such problems related to

animation by introducing some automatic coherency tracking or simplifying the user

input to generate many frames of renderings.

Work in improving correspondence between features of NPR renderings between

frames has been applied to animated movies as well as to completely interactive en-

vironments. The work of Meier [69], which uses a particle system on object surfaces, is

designed for animation, since the particles stick to a fixed position on an object, creating

an effect of strokes being carefully placed to correspond to the same point in space in
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adjacent frames. A random selection of points could otherwise lead to distracting noise as

strokes pop in and out between frames. While this might be an interesting effect in itself,

it would likely become tiring quickly. The principles described by Meier were extended

by Daniels [24] in the Deep Canvas system used to animate Disney’s Tarzan. With this,

artists paint backgrounds on a computer, and the strokes are projected to correspond to

points on 3D models. Klein et al. [55] use NPR textures at different scales to created

a seemingly painted, interactive environment. Contour rendering introduces its own co-

herency problems, as stroke textures need to correspond between frames, even though

contour chains can appear, disappear, bifurcate, or merge between frames. Kalnins et al.

[52] handle such problems by propagating contour positions in small neighborhoods while

keeping track of stroke direction. This works quite well for keeping contour appearance

consistent between frames.

Much of the work in reducing the amount of up-front user input for animation has fo-

cused on automating the process of rotoscoping. Rotoscoping is the process of producing

frames of animation by tracing objects in a reference sequence of images. This tech-

nique has its roots in early hand-drawn animation, where reference footage was traced

frame by frame [36]. This traditional approach of tracing by hand requires a tremen-

dous amount of manual work, yet the concept forms the basis of a compelling way to

reduce the amount of work necessary for animation. By automatically rotoscoping from

video, one can potentially generate animations with little more than a video camera and

a computer. This has the advantage of requiring no modeling skill on the part of the

user, and equipment is inexpensive. In one approach that requires no motion tracking,

successive frames of animation may have strokes painted over only in regions that have

changed significantly; an alternative is to use optical flow to move strokes in the direction

of scene motion [47, 62]. This is similar to Meier’s model of using particles on the surface

of objects to track stroke positions between frames. An approach using video segmenta-

tion is described by Collomosse and Hall [20], where a video sequence is partitioned into
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space-time regions, and each segment is rendered with a solid color, with some temporal

coherency between segments. Other works propose animation from video techniques that

more heavily involve the user. For example, SnakeToonz [1] requires a user to indicate

a few curves in the source video, which are then modeled as Bézier snakes to be tracked

from frame to frame. Curve endpoints snap and close to create closed regions that are

shaded with solid colors. In [2], the user can iteratively run a process to track curves and

hand-tune the resulting curves if necessary. Further, the curves can be stylized as brush

strokes and used to fill in regions to create more interesting styles. With video tooning

[91], a user outlines objects at keyframes, and a segmentation algorithm is applied to the

video volume to track regions, which can then be stylized by a user. Collomosse et al.

[19] explore the automatic addition of motion lines and other effects of traditional ani-

mation, which could integrate well with other automatic rotoscoping techniques. While

the advantages in ease of content creation with animation from video are obvious, it is

also currently a limited medium without significant input from artists. However, insights

from techniques developed for constructing and working with animation from video can

be valuable to any artistic animation system.

2.1.5 Interaction

An important problem that must be taken into consideration when designing techniques

for NPR is in providing user controls over artistic style. One promising approach is to

allow an artist to draw directly within an artistic virtual world. This has the compelling

advantage of being intuitive, since one draws directly on objects, and it allows an artist

to see the results of changes to a scene immediately. Cohen et al. [17] build a scene

based on strokes and gestures drawn directly in a NPR environment, which allows users

to creatively manipulate the world by painting on billboards and deforming the ground

plane with gestures. The system limits a user to a small range of viewpoints, since the

billboarding effect becomes obvious at extreme angles. Bourguignon et al. [8] present
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a similar interface, where a user draws on a plane in 3D. In this case, however, the

resulting scene consists of strokes in 3D that deform and disappear according to the

viewpoint. Since the strokes are not tied to any underlying model, they sometimes

deform in strange or unexpected ways, but worlds can still be flexibly navigated. With

WYSIWYG NPR [53], a user to draws contour strokes and decals directly on surfaces

of 3D models. Features can be annotated at different levels of detail, and some subtle

fading as the user transitions between detail levels allows one to navigate the NPR scenes

quite freely. The system’s interface is quite natural; and it allows one to take shortcuts,

such as by giving an example stroke to be used for all contours on an object. While the

number of possible styles is limited, the range of variation in style demonstrated with

the stroke-based interface is impressive.

Alternatively, NPR styles can be defined by procedural shaders, as [41] proposes a

shader system for contour rendering. While this can provide a powerful way to describe

contour behavior, it does require the user to write algorithmic scripts, and it is limited to

contour rendering. Procedural surface textures can be applied to surfaces in a scene as

well, to produce very detailed pen-and-ink renderings [95]. A good interface to a similar

system allows users to specify stroke directions on a surface and give example strokes

which are used to fill in detail [82]. The user simply specifies direction fields and example

strokes, which the system uses to automatically fill in detail on an object.

All of these approaches have their merits, although they are tied tightly to the style

of rendering they are designed for. Automatically rendering novel viewpoints is a partic-

ularly difficult problem for any interface intended to give an artist control. Some of the

works described here handle this well, but there is also the problem of giving an artist too

much control. This can lead to a daunting task of annotating large scenes. Some degree

of automation can help, but care must be taken, otherwise rendered scenes may appear

uniform and monotonous. No previous work has specifically addressed problems of inter-

acting with a NPR system in the context of segmentation, but many of the techniques
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described here could be useful when designing artistic control for such a system.

2.2 Image Segmentation

Image segmentation is one of the classic problems in machine vision. The problem is

to divide an image plane into independent partitions that are perceptually significant.

Since there is no unique solution to segmenting an arbitrary image, there have been

several proposed approaches to it. Some methods treat points in the image as vectors

in some feature space which can be clustered based on a measure of proximity. Another

class of methods that has grown in popularity in the past decade treats the image as a

graph [96]. Doing so makes it trivial to apply graph theoretic partitioning algorithms to

segment images. This section elaborates on some of the details of different approaches

to image segmentation.

2.2.1 Point-Based Segmentation

There are a variety of algorithms that segment data in a feature space with a metric

defined on it. One of the simplest of such algorithms is K-means, first suggested in [63].

This is an iterative process that begins with K randomly or user-assigned centers. In

each iteration, two steps occur. First, data points are assigned to the nearest center.

The second step is to move each center to be the mean of the data points assigned to it.

This process continues until convergence, when point assignments no longer change. One

problem with this algorithm is that all data points are weighted equally, so outliers can

cause problems by pulling means away from a good center. That is because of the strong

assumptions K-means makes about how the data is distributed. It is only appropriate

for very tight, well separated clusters of points that are in roughly hyperspherical shapes.

Also, the process is very sensitive to the placement of the initial centers. A poor selection

of centers can cause clusters of points to be split between two segments, or some centers
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may have no points assigned to them at all. K-means is not often applied directly to data

to be segmented, but it is sometimes used as a step within more complicated clustering

algorithms, due to its simplicity.

An approach that addresses many of the shortcomings of K-means is the Expectation-

Maximization (EM) algorithm for generating mixtures of Gaussians. EM attempts to

optimize the likelihood that the given data was generated by a combination of Gaussian

distributions. Like K-means, EM requires the number of segments to be determined in

advance, and an iterative process fits K Gaussian means and variances to data points.

Once the algorithm is stopped, data can be segmented by thresholding to the most

likely Gaussian. This algorithm is an improvement over K-means in that outliers are

better dealt with, and data can lie in long, thin strips without being divided into several

segments. However, this approach assumes that data was generated by a number of

Gaussians, and very often this is not the case. Hence, any points that lie along a curve

other than a line will often be overly segmented. EM has been applied to images in [98],

with limited success.

One way to overcome the assumptions of K-means and Gaussian mixture models is

to use support vector machines, as proposed by Ben-Hur et al. [6]. In support vector

clustering, a nonlinear projection by a Gaussian kernel is applied to the data, bringing

it into a high-dimensional space. A minimal bounding hypersphere is then computed in

this space. Projecting this hypersphere back to the original feature space results in a

number of contours enclosing regions corresponding to clusters of points. By ignoring

outliers in the high-dimensional space, robust segmentation of point data is possible.

Clusters need not conform to simple shapes, sets of points along curves may be clustered

appropriately by support vector clustering. Ben-Hur et al. show no results on images,

but the algorithm makes a promising candidate for image segmentation.

Another robust approach to segmentation of point data in images is that of mean

shift [21]. This uses a density gradient estimation to get a mean shift vector for small
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windows of data, which points in the direction of maximum increase in density. This

has the effect of shifting local means to a nearby region where most points are. Hence,

points may be clustered by iteratively computing mean shift vectors and moving windows

until convergence. Since this approach only relies upon the density of data and not any

assumptions about the process that generated the clusters, it handles arbitrarily shaped

segments of points. Furthermore, the algorithm tends to converge rapidly, making it

computationally inexpensive. Mean shift is a very powerful approach to segmenting point

data, but like any other point-based approach, it is depends on a measure of distance

between points. With graph-based approaches, one has more flexibility to easily define

constraints or weights on segmentation that would be difficult to represent with only a

distance metric in a feature space. Next, we examine segmentation on graphs and their

application to segmenting images.

2.2.2 Segmentation as Graph Partitioning

First, we make a few definitions related to graph partitioning clear. In this thesis, a

graph, G, is always considered to be a set of N nodes, V , and weighted, undirected edges,

E. Pairs of nodes may be connected by an edge, with the weight on an edge being a

positive real number which represents the affinity between two nodes. The more similar

two nodes are considered, the greater the weight on the edge between them should be. If

a node is not reachable from some other node by any path of edges in G, the two nodes

are said to be in different components.

To partition a graph, one typically starts with a graph made up of a single component

and removes edges to produce multiple components by making some groups of nodes

unreachable from some other groups nodes, which may be called partitions, segments,

or clusters. There are two basic approaches to this: removing edges from a graph,

or starting with no edges and selecting which edges to add back to the graph. Most

algorithms applied to image segmentation use the former method, more specifically using
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graph cuts. A cut is a set of edges that, when removed, completely partitions a single

component into at least two components. Thus, it is not possible to reach any node in

one component from any node in the other component by traversing graph edges.

Regardless of the partitioning method used, one must assign some relationship be-

tween an image and a graph for any graph segmentation algorithms to be useful. It is

common for nodes of a graph to be created such that they have a one-to-one correspon-

dence with pixels in an image. Edges may be created between adjacent pixels, forming

a grid, so at most any node has four edges; but it is also possible to let edges connect

all pixels within a small neighborhood, at a computational cost for the increased graph

size. Creating many edges to nodes within small neighborhoods can be useful for large,

noisy images, though. Weights must be selected for the edges as well. These edge weights

can be as simple as inverse distance between pixels in a feature space, to create larger

weights between pixels that are similar in color and smaller weights between pixels that

are dissimilar. Weights might be modified based on user input or some other information

to guide the segmentation process. This is one of the strengths of graph-based image

segmentation—a metric can be modified locally, for pairs of pixels, without affecting the

relationship of these pixels to any others.

Given the open-ended nature of the problem of optimally segmenting a graph, there

are a number of algorithms that have been developed to solve this problem. Some tech-

niques use mainly local criteria to quickly make decisions about which edges to keep,

such as that of Felzenszwalb and Huttenlocher [34]. This is a constructive algorithm;

that is, it selects edges to add to a final graph, rather than removing edges with graph

cuts. By greedily adding edges to the graph based on some notion of internal variation

within a segment, they satisfy a global notion of preventing oversegmentations and un-

dersegmentations. This algorithm is simple, yet it automatically selects the number of

clusters, since it is only concerned with decisions on adding single edges. The results

of segmentations on example images tend to be susceptible to noise despite manual pa-
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rameter selection, oversegmenting some regions, while others are left undersegmented.

However, this approach does indicate that simple algorithms on graphs can reflect global

information reasonably well. Algorithms that globally optimize cuts on graphs have the

potential to produce improved segmentations by using more information about the graph

at once. Some popular graph cut algorithms are those based on maximum flow networks

and those based on spectral clustering. We review both techniques next.

2.2.3 Minimum Cut Algorithms

A critical factor in any graph partitioning algorithm is the choice of objective function,

since there is no one way to define the “optimal” partitioning of a graph. Maximum

flow techniques are based on the observation that finding the edges of maximum flow in

a network is equivalent to finding the minimum cut on an undirected graph [37]. The

minimum cut on a graph between two nodes, called terminals, is the cut that completely

separates the two terminals while having a minimal sum of edge weights. Hence, the

minimum cut on a graph between two nodes can be found by finding edges that become

saturated when flow is propagated from one terminal to the other. This can be computed

in polynomial time by a variety of algorithms [9].

Requiring two terminal nodes is problematic, because there is no straightforward way

of selecting them. One might add the terminals as new nodes in the graph and somehow

select edge weights from these terminals to nodes in the graph. Another possibility is

selecting two nodes already in the graph to act as terminals, but it is not clear which are

appropriate. This means we need some a priori knowledge of which nodes should belong

in the different clusters. Some approaches get around this limitation by requiring user

interaction, for example, letting the user label a few background and foreground pixels in

an image [11, 78]. While the results can be of a reasonably high quality, there are often

times when an image should logically be segmented into more than two partitions, and

demanding so much input from a user is undesirable.
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There are ways to get around the two-terminal requirement without making assump-

tions or demanding user input, but they tend to be too slow to consider their use in

interactive applications. For example, one could instead solve the multi-terminal prob-

lem, which simply takes the minimum cut among all possible pairs of nodes. However,

any operation that must examine all possible pairings of nodes is certain to be compu-

tationally expensive. Näıvely, this requires solving TN−1 maximum flow problems, where

Tx is the triangular number equal to the binomial coefficient
(

x+1
2

)

. To generate more

than two segments, the algorithm can be run again on the resulting segments until some

threshold condition is met, which slows down the process even more. Boykov et al. [10]

present an approach to the multiple labeling problem in terms of energy minimization.

They use an iterative minimum cut process that finds an approximation to the solution of

the global optimization problem, but it requires on the order of seconds to segment small

images on a modern machine [9]. In [96], Wu and Leahy segment images using a graph

representation with the Gomory-Hu algorithm [38], which requires only the solution of

N − 1 maximum flow problems to solve the multi-terminal minimum cut problem ex-

actly, given a graph with N nodes. This is a significant computational savings over TN−1

maximum flow problems; but it is still impractical for real-time interaction, considering

that N will typically be on the order of tens or hundreds of thousands. Veksler takes

a different approach, finding nested segments by computing closed contours of a small

cost around each pixel; but even with optimizations, this approach is fairly slow for small

images [90].

Perceptually, a minimum cut is meant to correspond to a boundary between pixels

of high variation. However, in its basic form, the minimum cut criteria favors removing

fewer edges, since it is not normalized by cut size in any way. It can be optimal to

cut edges from a single node rather than cutting a long edge between two clusters of

nodes. This can cause very small, spurious segments due to noise. Also, the minimum

cut algorithm makes no attempt to maximize similarity within segments, so a great deal
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of information in the graph is effectively ignored. For these reasons, and the difficulties in

quickly finding global optima for an arbitrary number of segments, we consider another

graph-based segmentation technique.

2.2.4 Spectral Clustering

In the last few years, spectral graph clustering methods have become popular as a promis-

ing approach to graph partitioning. It has been observed that many properties of a graph

can be revealed by inspecting the eigendecomposition of a matrix derived from the graph

[16]. Spectral clustering methods are those that group nodes based on one or more

eigenvectors of a such a matrix corresponding to a graph. An affinity matrix (or weight

matrix) is constructed, with each row and column corresponding to a numbered node in

the graph. The values in this graph reflect the edge weights between pairs of nodes. If

nodes have no edge between them, this matrix entry is zero. Typically nodes are not

allowed a circular edge, so the diagonal values are all zero as well. Depending on the

algorithm, this matrix may be manipulated further, for example by multiplying it by

other matrices. Then, eigenvectors of the resulting matrix are computed, and some or

all of them are analyzed to partition the graph nodes.

One direct approach, proposed by Perona and Freeman, is to use the eigenvector cor-

responding to the largest eigenvalue of the affinity matrix [73]. The nodes corresponding

to nonzero entries of this eigenvector belong to one segment, while the remaining nodes

with zero entries are assigned to the other segment. This is possible due to the observation

that if affinity between elements of distinct groups is zero, then the largest eigenvector

will have the property of separating elements into two distinct zero and nonzero groups.

In practice, of course, the affinity between groups will be greater than zero, and the

authors show that the zero eigenvector entries are instead on the order of the affinity

between the groups. Hence, in practice, some small threshold on the largest eigenvec-

tor may be used to segment a graph if there is sufficient separation between groups to
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begin with. This tends to work well on obvious partitionings, but it becomes less clear

where to threshold the eigenvector when images do not have a clearly dominant segment.

Furthermore, this approach tends to favor tight clusters. In [86], some examples of poor

separation by the dominant eigenvector of the affinity matrix are given. Note that in

this work, the authors refer to this algorithm as the average association formulation of

spectral clustering.

Kannan et al. [54] present an approach relying on singular vectors with the goal of

maximizing conductance in a clustering, which is meant to increase the importance of

vertices that have many similar neighbors. Ng et al. [70] give an algorithm that uses

the K largest eigenvectors of a matrix that is related to the affinity matrix’s Laplacian.

That is, for weight matrix W and D = diag(v), where v is a vector with each element

set to the sum of elements in the corresponding row of W, the eigendecomposition of

D−1/2WD−1/2 is computed. After forming a matrix from these K eigenvectors and

normalizing the length of each row, the authors treat each row corresponding to a graph

node as a point, and cluster them using K-means. This approach is based on the fact

that in the ideal case where all clusters are completely separated from each other, these

points in K-dimensional space corresponding to graph nodes will be orthogonal to each

other when they belong to different clusters. Some analysis shows that perturbing the

weight matrix from this ideal case leads to a rather well behaved perturbation of these

points, so that a simpler clustering method can be applied. This seems to give better

results on point data than some other techniques, including that of Kannan et al., and it

has the bonus of finding K segments simultaneously, for a specified value of K. Zelnik-

Manor and Perona [100] extend this approach by introducing local scaling and attempting

to automatically find the number of segments. They attempt to recover a rotation of

the eigenvectors that aligns them with the canonical axes and use this to assign points

to clusters. Gradient descent is used to recover this alignment by finding an optimal

rotation, which works for cases where separation of segments is clear. The number of
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segments is selected by trying many different values of K and selecting that which seems

to give the best clustering of points to the canonical axes. On image data, their fully

automatic algorithm seems to perform well, but it does tend to pick up small, isolated

segments at the image boundary, probably due to the local scaling used. However, for

both the K-means approach and gradient descent, it is easy to generate many cases on

point data that result in very poor segmentations.

One of the most often cited formulations of spectral clustering is that of normalized

cuts [86], which is based on a continuous relaxation of a discrete optimization problem.

In this case, the eigenvector for the second smallest eigenvalue of D−1/2(D − W)D−1/2

is used to partition the graph nodes. It can be shown that this formulation uses both

the largest and second largest eigenvectors of a normalized affinity matrix [92]. This

extra information leads to much more robust bipartitionings than relying only on the

largest eigenvector directly. It can also be shown to be related to the algorithm of Ng et

al., which ties together approaches based on matrix perturbation and optimization. In

fact, a multiclass variation of normalized cuts exists [99], which solves for K segments

simultaneously. This turns out to use exactly the same algorithm as that of Ng et al.,

although they approach the solution in completely different ways. Since normalized cuts

and its multiclass form are the algorithms we have selected for segmenting the image,

the next chapter describes them in more detail.

These spectral clustering techniques are not appropriate for real-time interaction be-

cause calculating eigenvectors of an N×N matrix can be quite slow for large N , since this

operation is on the order of O(N3) for dense matrices. Most implementations dealing

with large graphs use sparse matrix eigendecomposition algorithms such as the Lanc-

zos algorithm, which is designed to give an approximate solution for sparse, symmetric

matrices. This has a complexity of O(mN), where m is the maximum number of matrix-

vector computations required, typically less than O(
√

N) [86]. Despite the relative speed

of the Lanczos algorithm for sparse, symmetric matrices, spectral clustering algorithms
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can take several seconds or even minutes on a fast machine, since N can quickly grow to

hundreds of thousands. Some have attempted to deal with this by oversegmenting the

graph with a fast, linear time algorithm, and treating the segments as nodes for normal-

ized cuts [76]. As we will see in the next chapter, this direct approach to reducing the

graph size is flawed. Others have approached normalized cuts with a multiscale algorithm

[85], but this too runs on the order of seconds. One compelling approach is to compute

eigenvectors on a coarse representation of the original matrix and interpolate to get an

approximation to the eigendecomposition, as in the work of Chennubhotla and Jepson

[15]. While this proves to be significantly faster than other sparse matrix eigenvector

solvers, the running time on a fast machine is on the order of seconds. Although spectral

clustering presents challenges in its computational complexity, it is possible to accelerate

the algorithm significantly to the point of interactive rates on simple scenes. This is

demonstrated in the next chapter.



Chapter 3

Segmenting the Image Plane

“The artist is nothing without the gift, but the gift is nothing without

work.”
– Emile Zola

In this chapter, we present an approach to segmenting an image based on 3D scene

information. We review an approach to graph segmentation based on spectral clustering,

and it is adapted to work at near-interactive rates.

3.1 A Face Adjacency Graph

Since we are not segmenting photographs, but rather rendered 3D scenes, we have much

more information available than typical image or video segmentation. A scene is rendered

from a single mesh made up of any number of separate objects. The faces of the mesh

are always triangular, with textures specified by texture coordinates at the face vertices.

By rendering a triangle ID image, we can identify the face and object that occupies any

pixel. Other auxiliary buffers may also be rendered, such as a depth image, as in [80].

3.1.1 Edge Weights

We first consider what the weight on edges should be if we are segmenting an image

with additional information provided by the explicit knowledge of the 3D scene being

rendered. There is one graph node for each pixel in the image, and edges are introduced

between nodes corresponding to adjacent pixels. Edge weight is determined by pixel

30



Chapter 3. Segmenting the Image Plane 31

affinity—the more strongly-related two pixels are, the greater the weight on their shared

edge.

Typically, the affinity between pixels in image segmentation is set to some variation

on exp(−‖xi − xj‖/(2σ2)), where xi and xj are feature vectors corresponding to nodes

i and j [58, 73, 86, 92, 100]. This feature vector can be as simple as the vector in RGB

color space for each pixel. Since we have a complete description of the 3D geometry,

we can modify the feature vector to take advantage of this information. We also take

advantage of the fact that pixels are represented in a graph, which does not require that

nodes be related by a distance metric that satisfies the triangle inequality. This allows us

to specify precise changes in weight between two nodes without affecting the relationships

of those nodes to any other nodes in the graph.

To calculate affinities between pixels, we render a number of reference images: a color

image of the scene, a depth map, a triangle ID reference image, and an importance map.

In the triangle ID reference image, each face in the mesh is rendered with a unique color,

so that we can quickly determine what face of the mesh is rendered to any pixel of the

image, as in [56]. From the triangle ID, a lookup table can be used to determine which

scene object each pixel belongs to. This table is computed once when the mesh is loaded.

For the importance map, each object in the scene may be optionally tagged in advance

as being more or less “important.” The importance map is generated by rendering the

scene with each pixel shaded in proportion to its importance, so unimportant elements are

rendered in black and important elements are white. The user tags objects by painting

to grayscale texture maps, so objects can even vary in importance over their surface.

Given these reference images, we can define a feature vector fi for each pixel i:

fi =

(

wcri, wcgi, wcbi,
wz

zi + β

)T

. (3.1)

where (ri, gi, bi) is the color of the pixel in the unit cube, zi is the depth of the pixel,
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wc and wz are user-defined weights, and β is a user-defined bias. Expressing depth in

the feature vector as 1/(zi + β) treats objects that are far from the viewer as having

similar depth, even though the true difference in depth between them may be greater

than that of objects closer to the viewer. This models how artists often group distant

objects together, even if their relative depths differ greatly.

The weight on the edge between graph nodes i and j is

w(i, j) = exp
(

−
(

‖fi − fj‖2 + c
)

σij

)

. (3.2)

The constant c expresses the fact that no two adjacent pixels are exactly the same, since

they occupy different positions in 2D. The scaling parameter σij consists of three terms:

σij = oijgijsij. The weight oij is used to separate different objects in the scene—if pixels

pi and pj belong to different objects, as determined using the triangle ID reference image

and object lookup table, then oij is set to exp(wo); if the object IDs are the same, then

oij = 1. That is,

oij =











1 if pi and pj belong to the same object,

exp(wo) where wo ≥ 0 otherwise.
(3.3)

This has the effect of weakening edges connecting nodes between two different objects

in the scene when the user sets wo > 0. We use exp(wo) rather than wo directly so that

setting wo to zero will result in oij = 1 everywhere. Hence object IDs will be ignored

completely in calculating edge weight when wo = 0, making the user-set parameters more

consistent.

Group IDs are used with gij in a similar fashion. Objects may be tagged with a group

ID by the user, by simply selecting them while navigating a scene in 3D and inputing a

group ID number. Then, if pi and pj belong to different groups, gij = exp(wg), otherwise
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gij = 1. Hence,

gij =











1 if pi and pj belong to the same group,

exp(wg) where wg ≥ 0 otherwise.
(3.4)

For example, this allows the user to specify that a group of bushes should be segmented

together before being segmented with another nearby object that happens to have the

same color.

Finally, the parameter sij is used to emphasize important objects by encouraging them

to be segmented, and to prevent unimportant objects from being overly segmented. Each

pixel pi has an associated importance value si ∈ [0, 1], as determined from the importance

map. The weight is defined as sij = (max(si, sj))
ws , where ws is the user-specified

weight for importance. Hence, an edge between two nodes with small si and sj will be

strengthened, but there will be little or no effect on the edge if either of the nodes are

considered important.

This gives a user a total of six parameters to set to control the segmentation of a

scene, in addition to defining any group IDs and object importance. However, a user can

ignore any parameters that are not considered to be necessary—one could simply set all

but wc (the weight for color) to zero and have affinity equivalent to that which is usually

used in image segmentation. The other parameters may be viewed as tools to refine a

segmentation, as color alone cannot be expected to give reasonable results all the time.

3.1.2 Constructing a Face Adjacency Graph

Rather than segment an a scene at the pixel level, we create a face adjacency graph. In

this graph, each node is associated with a visible face of the mesh that makes up the

scene. Edges connect nodes of faces that are adjacent in the image plane. Hence, our

primitive for segmentation is a face of the mesh rather than a pixel of the image. This



Chapter 3. Segmenting the Image Plane 34

Figure 3.1: An example of a face adjacency graph for two objects. Circles represent

nodes in the graph corresponding to faces and dashed lines represent edges between faces

that are adjacent in image space.

prevents faces from being split between two or more segments, which can be convenient

when rendering some artistic styles. Adjacent faces in the image can be visited simply

by walking through the graph, even if the faces belong to completely different objects.

This also results in a graph that will require much less memory if rendered faces tend to

take up more than a single pixel. This makes operations on the graph faster, since the

number of nodes and edges is typically reduced.

To quickly generate the face adjacency graph, we render a triangle ID reference image,

where each pixel is given a color that indicates the unique identification number of the

triangle that is rendered to that pixel for the current camera orientation. This triangle

ID image can be scanned over quickly to find which triangles are adjacent in the image

plane. For each pixel, if the pixel to the right or below has a different triangle ID, those

faces’ nodes are connected with an edge in the face adjacency graph. The time required to

build the graph this way is negligible compared to the time taken to calculate eigenvectors

and segment the graph. Figure 3.2 shows a face adjacency graph generated using this

technique, with 4,791 edges rather than the 319,200 edges that would be required for full

400x400 images, about a 98.5% reduction in edges.

This technique for building the face adjacency graph is a quick approximation to

the planar map employed by Winkenbach and Salesin [95]. Since the planar map the

authors generate is not dependent upon the rendering resolution, it provides more precise
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(a) The faces of a mesh,
shown in different colors.

(b) The adjacency graph
for this view.

(c) The graph rendered
from another angle.

Figure 3.2: An adjacency graph for a simple scene. Nodes of the graph are faces of the

mesh, rendered as the average position of the vertices of each face, and edges connect

nodes that are adjacent in the image plane.

adjacency information. For example, faces that occupy less than a pixel might not be

rendered, so they would be ignored in the graph in our implementation. Another minor

error in our algorithm is that occasionally triangles that meet at a vertex will have

one pair of adjacent pixels, even though they share no edge. However, the overhead of

determining adjacency information with scenes consisting of a large number of triangles is

prohibitive to real-time interaction. The faults in the image-based approach to building a

face adjacency graph are not significant enough to warrant using a more precise algorithm,

since they correspond to very small details that have little impact on the resulting graph.

3.2 Normalized Cuts

The normalized cut criterion for graph partitioning, introduced by Shi and Malik [86],

minimizes the ratio of the value of a cut to a segment’s measure of self-similarity. In

contrast, max flow algorithms only minimize the cut and make no guarantees about

the relative affinity between pixels within a segment. Previous spectral techniques only

minimized cuts with respect to the number of nodes within the segments generated, but

this addresses the number of nodes in each segment, not the similarity between nodes

in the same segment. The approach of balancing cut cost and region self-similarity is
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similar to that of ratio regions, which seeks to minimize the cost of a cut divided by the

sum of edge weights of a segment produced by the cut [22].

Let A and B be any two disjoint sets of nodes that partition a graph G. The cut

between A and B has a value defined as

cut(A,B) =
∑

u∈A,v∈B

w(u, v), (3.5)

where w(u, v) is the weight on the edge between nodes u and v. If there is no edge

between u and v, w(u, v) = 0. Similarly, the association between A and V is

assoc(A, V ) =
∑

u∈A,t∈V

w(u, t), (3.6)

where V is the set of all nodes in G, so V = A ∪ B. The definition of the value of

association is exactly the same as the value of a cut, the only difference in these two

values is in semantics. The normalized cut between A and B is

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
. (3.7)

To segment a graph using the normalized cut criterion, one partitions the graph into

segments A and B in a manner that minimizes Ncut(A,B). This discourages small,

isolated segments from being created by simultaneously minimizing the value of a cut

while maximizing the association of each segment, ensuring that they both have a suitable

number of similar nodes.

Finding the minimal normalized cut is NP-complete, but an approximate solution can

be obtained by using a spectral method. Let x be an indicator vector with N elements,

one corresponding to each node in G, where xi = 1 if node i is in segment A, and xi = −1

otherwise. Let D be the degree matrix, a diagonal N × N matrix with d the vector of

D’s diagonal elements: di =
∑

j w(i, j). Then Ncut(A,B) may be written in terms of d,



Chapter 3. Segmenting the Image Plane 37

x, and edge weights w(i, j), since

cut(A,B) =
∑

xi>0,xj<0

w(i, j), (3.8)

assoc(A, V ) =
∑

xi>0

di, and (3.9)

assoc(B, V ) =
∑

xi<0

di, (3.10)

we have

Ncut(A,B) =

∑

xi>0,xj<0 w(i, j)
∑

xi>0 di

+

∑

xi>0,xj<0 w(i, j)
∑

xi<0 di

. (3.11)

Let W be the symmetric weight matrix, with wij = w(i, j). Using this matrix, we

can derive Ncut(A,B) without the need for summations. For notational convenience, let

Ncut(x) = Ncut(A,B), cut(x) = cut(A,B), assoc1(x) = assoc(A, V ), and assoc−1(x) =

assoc(B, V ).

First, we find cut(x) in terms of d and W. Consider that

cut(x) =
∑

xi>0,xj<0

wij (3.12)

=
∑

xi>0

di −
∑

xi>0,xj>0

wij. (3.13)

In other words, if we take the sum of edge weights from all nodes in A and remove those

edges that connect to other nodes in A, this is equal to the sum of edges between A and

B. Let z = x + 1, where 1 is an N × 1 vector of ones. Hence, zi = 2 when xi > 0 and

zi = 0 when xi < 0. Then, we have

∑

xi>0

4di −
∑

xi>0,xj>0

4wij =
∑

i∈[1,N ]

diz
2
i −

∑

i,j∈[1,N ]

wijzizj (3.14)

= zTDz − zTWz (3.15)

= zT (D − W)z. (3.16)
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Combining Equations 3.12 through 3.16, we have

cut(x) = (1 + x)T (D − W)(1 + x)/4. (3.17)

Next, with k =
(
∑

xi>0 di

)

/ (
∑

i di), we can derive the following:

assoc1(x) =
∑

xi>0

di (3.18)

=

∑

xi>0 di
∑

i di

∑

i

di (3.19)

=

∑

xi>0 di
∑

i di

1TD1 (3.20)

= k1TD1, (3.21)

and

assoc−1(x) =
∑

xi<0

di (3.22)

=

∑

xi<0 di
∑

i di

∑

i

di (3.23)

=

∑

i di −
∑

xi>0 di
∑

i di

∑

i

di (3.24)

=

(

1 −
∑

xi>0 di
∑

i di

)

∑

i

di (3.25)

=

(

1 −
∑

xi>0 di
∑

i di

)

1TD1 (3.26)

= (1 − k)1TD1. (3.27)

Therefore, combining Equations 3.17, 3.21, and 3.27, we may rewrite Equation 3.7 as

Ncut(x) =
(1 + x)T (D − W)(1 + x)

4k1TD1
+

(1 + x)T (D − W)(1 + x)

4(1 − k)1TD1
. (3.28)

It can be shown that, if we relax the problem to allow elements of x to take on any
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A B A B

Figure 3.3: Examples of possible cuts on a graph. Left: A result that the minimal cut

might give, isolating a single node. Right: A result typical of normalized cuts, taking

segment association into account to give a more reasonable partitioning.

real value, Ncut(x) is minimized by the eigenvector corresponding to the second smallest

eigenvalue of the matrix D−1/2(D − W)D−1/2 [86]. A detailed derivation of this result

can be found in [76]. This solution can be converted into a graph partition to find

an approximate minimized normalized cut by thresholding x, so that element of the

eigenvector above the threshold are set to 1 and the rest are set to −1. Since there are at

most N − 1 possible threshold values, it is usually reasonable to search over all possible

values for that which minimizes Ncut(x).

To segment a graph into more than two partitions using this technique, we can first

compute a two-way partition of the graph, and then recursively apply the same normal-

ized cut algorithm to each segment, as in [88]. The process stops when Ncut(x) exceeds

a user-defined threshold, and no cut is made. This approach of selecting the segments

might be troubling because of its greedy nature. At each step, the most optimal cut is

made, which may not lead to the best global partitioning once all recursive cuts have

been completed. What is needed is a measure of fitness of all cuts in a scene rather than

individual cuts and a way to quickly optimize this measure. An extension of normalized

cuts to handle the case of an arbitrary number of segments is explored in Section 3.4.
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3.3 Condensed Graphs

Segmenting graphs at different scales has been applied with some success to speed up

the segmentation process significantly at a loss of some accuracy [85]. Here, we consider

a simple approach to reducing the graph size without dramatically affecting the final

segmentation.

3.3.1 Condensing a Graph

Even with the reduced size of the face adjacency graph, the graph will probably be too

large to be segmented within a few seconds for meshes with any detail. In the worst

case of a large, detailed scene, it might be that no face takes more than a single pixel,

resulting in essentially the same graph as the regular grid on the pixels.

To cope with these potentially large adjacency graphs, we introduce another graph,

the condensed graph. This graph serves the same purpose of speeding up segmentation as

the condensed graph described in [86], however we generate it by using a simple region-

growing algorithm. Each edge in the face adjacency graph is examined, and if it is strong

enough, the two nodes it connects are added to the same condensed node. Once all

face adjacency graph nodes are assigned to a condensed node, edges are added between

condensed nodes if they have face graph nodes with edges between them. In other words,

edges with weight above a threshold are collapsed. This corresponds to an assumption

that edges that are “strong enough” usually will not be cut. While there can certainly

be cases where this assumption does not hold, in practice, a reasonable threshold can be

selected to get a good segmentation while vastly reducing the graph size. By increasing

this threshold, a user can obtain faster performance, although at the cost of some possible

under segmentation.

We would like to weight the edges of the condensed graph such that a normalized

cut on it is equivalent to the corresponding normalized cut on the full face adjacency
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Figure 3.4: Left: Image graph produced from a rendering of two triangles. Each node

in the graph corresponds to a pixel, and edges connect adjacent pixels. Right: Näıvely

condensed graph, with only an edge between a node for each region.

graph it represents. Simply weighting the condensed edges as the sum of the weights

of the edges they represent is not sufficient, as can be seen with a simple example. A

näıve approach to clustering this condensed graph would be to apply the normalized

cuts algorithm directly. Unfortunately, this gives a poor approximation to clustering the

original graph. Consider an image made up of a red region and a blue region, as in

Figure 3.4. In general, the optimal normalized cut for this image should separate the two

polygons. However, suppose we condensed this graph to two nodes, one corresponding

to each polygon, with a single condensed edge with weight w between them. In this case,

there is one possible cut, which has a value of

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(3.29)

=
cut(A,B)

cut(A,B)
+

cut(A,B)

cut(A,B)
(3.30)

= 2. (3.31)

Thus, this normalized cut has a value of 2, regardless of the edge weights in the underlying

adjacency graph. Since this is the maximum possible cost of a cut in every graph, this

edge will never be cut, as it will exceed any sensible user-specified threshold for the cost

of a cut. However, one should expect the edge between the two regions to be cut—the
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edges between the regions have a small weight, and edges within each region have a very

large weight. Hence, the cost of the cut would be low relative to the association of either

region, resulting in a low normalized cut value.

From our simple example, it is easy to see that the condensing resulted in throwing

away information from the majority of the edges in the graph. The solution is to keep

track of each condensed node’s internal association; that is the sum of the weights on the

edges of the adjacency graph internal to the condensed node. The next section justifies

this and shows how to use the internal association in the context of normalized cuts to

segment a condensed graph.

3.3.2 Condensed Normalized Cuts

Let G′ = (V ′, E ′) be a condensed graph that represents a graph G = (V,E) at a reduced

size. Each node in V ′ (called a condensed node) corresponds a set of nodes in V . For

nodes u ∈ V and u′ ∈ V ′, we say that u ∈ s(u′) if u is assigned to condensed node

u′. That is, s(u′) is the set of nodes in V assigned to the condensed node u′. If nodes

u, v ∈ V are connected by an edge and u ∈ s(u′), v ∈ s(v′), where u′ 6= v′, then u′ and

v′ are connected by a condensed edge. Suppose we have arbitrary partitions A′ and B′

of G′. Then, there are corresponding partitions A and B of G such that u ∈ A if and

only if u ∈ s(u′) and u′ ∈ A′. We use the notation s(A′) to refer to the union of s(u′),

for all u′ ∈ A′. Hence, u ∈ s(u′) and u′ ∈ A′ implies that u ∈ s(A′). With weights on

condensed edges equal to the sum of the weights of their corresponding set of edges, we

have cut(A′, B′) = cut(A,B). This can be shown by the following:

cut(A,B) =
∑

u∈A,v∈B

w(u, v), (3.32)
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and

cut(A′, B′) =
∑

u′∈A′,v′∈B′

w(u′, v′) (3.33)

=
∑

u′∈A′,v′∈B′





∑

u∈s(u′),v∈s(v′)

w(u, v)



 (3.34)

=
∑

u∈s(A′),v∈s(B′)

w(u, v) (3.35)

=
∑

u∈A,v∈B

w(u, v). (3.36)

Thus, since we know that, in general, Ncut(A′, B′) 6= Ncut(A,B), it must be the case

that assoc(A′, V ′) 6= assoc(A, V ). Note that assoc(A, V ) = assoc(A,A) + cut(A,B), and

assoc(A′, V ′) = assoc(A′, A′) + cut(A′, B′). Then we have assoc(A,A) 6= assoc(A′, A′), in

general. This is due to the fact that we lose weights from edges between nodes that are

assigned to the same condensed node. More formally,

assoc(A,A) =
∑

u,v∈A

w(u, v) (3.37)

=
∑

u,v∈s(A′)

w(u, v) (3.38)

=
∑

u′,v′∈A′

w(u′, v′) +
∑

u′∈A′





∑

u,v∈s(u′)

w(u, v)



 (3.39)

= assoc(A′, A′) +
∑

u′∈A′





∑

u,v∈s(u′)

w(u, v)



 . (3.40)

Hence, making a slight modification to the measure of association between the condensed

nodes in a partition and all condensed nodes for G′ will give us the same value for any
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corresponding cut on G. That is,

Ncut
′(A′, B′) =

cut(A′, B′)

assoc(A′, V ′) + intassoc(A′)
+

cut(A′, B′)

assoc(B′, V ′) + intassoc(B′)
(3.41)

= Ncut(A,B), (3.42)

where

intassoc(A′) =
∑

u′∈A′





∑

u,v∈s(u′)

w(u, v)



 . (3.43)

Therefore, the value of a condensed normalized cut on a condensed graph, using the defi-

nition of Ncut
′ given, is the same as the value of the corresponding normalized cut on the

underlying graph. That is, Ncut
′(A′, B′) = Ncut(A,B). Further, the minimal condensed

normalized cut will correspond to the minimal normalized cut under the constraint that

no edges may be cut that have both nodes in the same condensed node. This means

that minimizing condensed normalized cuts is equivalent to minimizing normalized cuts

under certain cut constraints on strong edges.

This suggests an approach to using the graph for the full image, which is never

explicitly built, when generating the face adjacency graph. The graph for the full image

may be condensed to the face adjacency graph as it is constructed, without loss in

the normalized cuts segmentation algorithm. Edge weights are calculated on the edges

between pixels, as described in Section 3.1.1. Pixels that belong to the same face in the

mesh may be condensed into the same node in the face adjacency graph, keeping track of

any internal association of the rendered face. Once it is constructed, the face adjacency

graph can be condensed further. This condensed graph can be segmented, propagating

the segmentation back to the face adjacency graph when complete.

In practice, we build the face adjacency graph directly by iterating over the image,

introducing new nodes whenever a new triangle ID is visited, and adding weights to

either the graph edges for each node or their internal association. We then collapse

edges between faces with large average weight, since edges can span several pixels, to
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Figure 3.5: A condensed graph corresponding to its underlying graph by including self-

referencing edges to condensed nodes.

find the nodes of the condensed graph. Each node in the face adjacency graph stores the

condensed node it corresponds to. Then, each edge in the face adjacency graph is scanned

over, and its weight is added to the appropriate condensed edge if necessary. If the nodes

it joins belong to the same condensed node, the weight is added to the condensed node’s

internal association.

Another way to look at this solution is as augmenting G′ by adding an edge from

every condensed node to itself, as shown in Figure 3.5, and setting the weight of this

edge to the sum of the edges between the collapsed nodes:

w(u′, u′) =
∑

i,j∈s(u′)

w(i, j). (3.44)

The cost of these self-edges are automatically included when computing assoc(A′, V ′) or

assoc(B′, V ′). Applying the normalized cuts algorithm to this augmented G′ is straight-

forward, with the only necessary modification being that nodes can have an edge to

themselves. This is verified in Section 3.3.3.

In [76], the author takes a similar approach to quickly oversegmenting the graph

before applying normalized cuts, however it is assumed that the condensed graph can be

treated as an approximation of the full graph. As will be demonstrated with experiments

in Section 3.5, however, this assumption can lead to significant errors in clustering without
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using our definition of condensed normalized cuts.

3.3.3 Condensed Spectral Clustering

Now we consider what changes are required to Shi and Malik’s spectral approach to

normalized cuts to handle condensed graphs with internal associations. For condensed

normalized cuts, we have essentially replaced the standard definition of association with

the condensed association,

assoc
′(A′, V ′) =

∑

u′∈A′,t′∈V ′

w(u′, t′) +
∑

u′∈A′

∑

u,v∈s(u′)

w(u, v) (3.45)

= assoc(A′, V ′) + intassoc(A′), (3.46)

where A′ ⊆ V ′. We first give definitions of D′ and W′ that satisfy this definition of

condensed association when used in Equation 3.28. We then show that these matrices

have the property that D′−1/2(D′ − W′)D′−1/2 is positive semidefinite. Then the rest of

the derivation of finding the optimal partition in [86] follows from these two properties.

For a condensed graph, set the diagonal elements of W′ equal to their corresponding

nodes’ internal association, and compute D′ from W′. That is, w′

ij = w(i, j), for i 6= j,

but set the diagonal elements to w′

ii = intassoc(i). For the diagonal of D′, compute the

degrees from the rows of W′, so d′

ii =
∑

j w′

ij. We motivate this solution as follows.

Let D̈ be the degree matrix and Ẅ the weight matrix derived from the näıvely

condensed graph without internal associations. That is, Ẅ has zeros on its diagonal and

d̈ii =
∑

j w(i, j). Since the association depends only on the degree matrix (Equations

3.21 and 3.27), we modify D̈ to include internal associativity for each condensed node.

Instead of d̈ii =
∑

j w(i, j), the condensed degree matrix D′ is the diagonal matrix with

diagonal elements

d′

ii =
∑

j

w(i, j) +
∑

u,v∈s(i)

w(u, v). (3.47)
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Then, if x′ is the segment indicator vector for condensed nodes and k′ =
(

∑

x′

i>0 d′

i

)

/ (
∑

i d
′

i),

we have

k′1TD′1 =

∑

x′

i>0 d′

i
∑

i d
′

i

∑

i

d′

i (3.48)

=
∑

x′

i>0

d′

i (3.49)

=
∑

x′

i>0





∑

j

w(i, j) +
∑

u,v∈s(i)

w(u, v)



 (3.50)

=
∑

x′

i>0

∑

j

w(i, j) +
∑

x′

i>0

∑

u,v∈s(i)

w(u, v) (3.51)

= assoc(A′, V ′) + intassoc(A′). (3.52)

This is exactly what we want. A similar derivation follows for the other segment’s

association, (1 − k′)1TD′1.

However, the degree matrix is also used to calculate the value of cut(A′, B′) (Equation

3.17), so it will be affected by the changes to D′. To fix this, we set the diagonal elements

of W′ to the internal association of the corresponding condensed nodes. The changes to

the diagonal elements in D′ are subtracted out, since

D′ − W′ = (D̈ + P) − (Ẅ + P) = D̈ − Ẅ, (3.53)

where P is the diagonal matrix with the internal association for each corresponding node

on the diagonal. That is, pii = intassoc(i) and pij = 0 for i 6= j. Therefore, we have the

correct value for any cut on a condensed graph using D′ and W′:

(1 + x′)T (D′ − W′)(1 + x′) = (1 + x′)T (D̈ − Ẅ)(1 + x′) (3.54)

= 4cut(A′, B′). (3.55)

From Equations 3.52 and 3.55, we have that D′ and W′ give us exactly the value of
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condensed normalized cuts as defined in Equation 3.41.

We now show that D′−1/2(D′ − W′)D′−1/2 is positive semidefinite. Consider that

D̈ − Ẅ is already known to be positive semidefinite. Then, from Equation 3.53, so too

is D′ − W′. Thus, D′−1/2(D′ − W′)D′−1/2 is also positive semidefinite because for any

vector v of appropriate size,

vTD′−1/2(D′ − W′)D′−1/2v = vT (D′−1/2)T (D′ − W′)D′−1/2v (3.56)

= (D′−1/2v)T (D′ − W′)(D′−1/2v) (3.57)

= v̂T (D′ − W′)v̂ ≥ 0, (3.58)

for v̂ = D′−1/2v. Therefore, these definitions for the condensed weight matrix W′ and

the condensed degree matrix D′ allow us to use the standard approach of the spectral

normalized cuts algorithm. These definitions are also consistent with the idea of adding

self-referencing edges to condensed nodes, weighted by their internal association, and

using the matrices derived from that graph without modification.

3.4 Simultaneous Multiclass Segmentation

We have so far only considered two-way cuts that separate graphs into the two dominant

regions. As was discussed earlier, this greedy approach to segmentation can give poor

global segmentations. Yu and Shi have suggested a multiclass approach that finds K

segments simultaneously by optimizing one objective function [99]. We examine this

approach and suggest improvements to it in this section.

3.4.1 Multiclass Normalized Cuts

In multiclass normalized cuts, rather than selecting two partitions to minimize the cut

value and maximize their associations, we select K partitions that optimize a measure
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of average fitness for each partition. Yu and Shi define this measure for a segment A as

linkratio(A), where

linkratio(A) =
assoc(A,A)

assoc(A, V )
. (3.59)

The value of assoc(A,A) is high when a segment is very self-similar, while a smaller

value of assoc(A, V ) corresponds to a better separation between the segment and the

rest of the graph. Hence, increasing linkratio(A) for a segment A encourages it to contain

similar points while encouraging a cut between dissimilar points. Therefore, the objective

function is

knassoc(Γ) =
1

K

K
∑

l=1

linkratio(Vl, Vl), (3.60)

the K-way normalized association, where we aim to maximize this function by partition-

ing a set of graph nodes V into subsets of nodes Γ = {V1, V2, . . . , VK}.

We can see that, in fact, this definition of multiclass normalized cuts is exactly two-

way normalized cuts for the case where we set the number of segments to find to 2. Let

K = 2 and Γ = {A,B}. Then we have

knassoc(Γ) =
1

2
(linkratio(A,A) + linkratio(B,B)) (3.61)

=
1

2

(

assoc(A,A)

assoc(A, V )
+

assoc(B,B)

assoc(B, V )

)

(3.62)

=
1

2

(

assoc(A, V ) − cut(A,B)

assoc(A, V )
+

assoc(B, V ) − cut(A,B)

assoc(B, V )

)

(3.63)

=
1

2

(

1 − cut(A,B)

assoc(A, V )
+ 1 − cut(A,B)

assoc(B, V )

)

(3.64)

= 1 − 1

2

(

cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

)

(3.65)

= 1 − 1

2
Ncut(A,B). (3.66)

Therefore, maximizing the K-way normalized association for K = 2 is equivalent to

minimizing the normalized cut value. This suggests a spectral approach to optimizing

the objective function as well as using graph condensing to reduce the size of the data
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to work with.

The condensing strategy used for two-way normalized cuts works as expected for K-

way cuts. We can justify this with the following. For a set of nodes V with partitions

Vl for l ∈ [1, K], let V ′ be a condensed set of nodes, and let V ′

l be a partition of V ′ such

that s(V ′

l ) = Vl. Then,

knassoc(Γ) =
1

K

K
∑

l=1

assoc(Vl, Vl)

assoc(Vl, V )
(3.67)

=
1

K

K
∑

l=1

assoc(V ′

l , V
′

l ) + intassoc(V ′

l )

assoc(V ′

l , V
′) + intassoc(V ′

l )
(3.68)

=
1

K

K
∑

l=1

assoc
′(V ′

l , V
′

l )

assoc′(V ′

l , V
′)

. (3.69)

This can be summarized as follows. Assume that each condensed node has an associated

set of nodes that all belong to exactly one segment. Then association of a segment with it-

self is the same as the association of the corresponding condensed segment with itself plus

the internal association within its condensed nodes. The association of any segment with

the entire graph is similarly defined as the association of that segment’s corresponding

condensed nodes with the condensed nodes of the full graph, plus the internal association

within the segment’s condensed nodes. The association within condensed nodes outside

the segment can be ignored because any edges from inside the segment to outside nodes

are captured in the condensed edges. In both cases, these values match the definition

of condensed association given earlier. Hence, adding circular edges to condensed nodes

with internal association as their weight gives us exactly the same optimization problem,

under the constraint that no cuts may be made within condensed nodes. This allows us

to accelerate K-way cuts by working on a reduced size graph as before, which can result

in great computational savings in any optimization algorithm.

Now we briefly introduce existing spectral clustering techniques that others have ap-

plied to find an approximate optimal partitioning for multiclass normalized cuts. Posing
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the optimization problem in terms of the weight matrix W and degree matrix D is per-

haps more straightforward for multiclass normalized cuts than two-way normalized cuts.

Instead of using a single indicator vector that is thresholded to give segment assignments

to nodes, we use a binary N × K partition matrix X, which is 1 exactly once in each

row, corresponding to the segment ID assigned to the node for that row.

If Xl is the vector formed by the column of X corresponding to segment Vl, then we

have

assoc(Vl, Vl) = XT
l WXl. (3.70)

To see why this is so, consider that assoc(Vl, Vl) =
∑

u∈Vl

(
∑

v∈Vl
w(u, v)

)

, that is, the

total sum of weights for each node in Vl of edges that have another node in Vl. Then

WXl gives us a column vector where each element is the sum of edge weights from the

corresponding node to all nodes in Vl,

WXl =













w(1, v1) + w(1, v2) + · · ·
...

w(N, v1) + w(N, v2) + · · ·













=













∑

v∈Vl
w(1, v)

...

∑

v∈Vl
w(N, v)













, (3.71)

where vi ∈ Vl. Multiplying this vector by XT
l on the left selects the sum of only those

rows that correspond to nodes in Vl, resulting in the correct summation.

We can also find that

assoc(Vl, V ) = XT
l DXl. (3.72)

Since D is a diagonal matrix where each diagonal entry is the sum of edge weights from

the corresponding node, DXl is a vector where nodes in Vl have an entry equal to their

degree, and entries for nodes not in the segment are zero. Multiplying this by XT
l on the

left selects the sum of degrees of nodes in Vl. This is exactly the sum of all edge weights

from each node in the segment.
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Thus, the optimization problem can be stated as for a fixed K, maximizing

knassoc(X) =
1

K

K
∑

l=1

XT
l WXl

XT
l DXl

, (3.73)

subject to the constraint that X is a binary partition matrix.

Yu and Shi show that by manipulating Equation 3.73, this may be relaxed into a

continuous domain to find an global solution using eigenvectors of the Laplacian as with

two-way normalized cuts in [99]. The spectral algorithm requires the eigenvectors cor-

responding to the K largest eigenvalues of D−1/2WD−1/2. This matrix appears quite

different from that used for greedy normalized cuts, but they are in fact solving the same

problem. Consider that the generalized eigendecomposition problem for the multiclass

case is

Wx = µDx. (3.74)

For the greedy case, we instead have (D − W)x = λDx. However, with some small

manipulations, we can find the following:

(D − W)x = λDx (3.75)

Dx − Wx = λDx (3.76)

Wx = Dx − λDx (3.77)

Wx = (1 − λ)Dx. (3.78)

In other words, since (1−λ) = µ, the eigenvectors in the multiclass formulation are exactly

the eigenvectors of the greedy algorithm, just taken in reverse order of eigenvalue.

The K largest eigenvectors of D−1/2WD−1/2 are used to form the columns of a matrix,

where each row represents a point in R
K corresponding to a node of the graph. These

rows are then normalized to have a length of one, so that all points lie on the surface of a

hypersphere, resulting in a continuous global optimum X̃∗. Any rotation of this solution
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will also be optimal, so the problem reduces to finding a rotation of X̃∗ that gives a

binary discretization close to the global optimum.

This turns out to be solving the multiclass spectral clustering problem in exactly the

same way as Ng et al. in [70], although the approach used to justify the algorithm is quite

different in each case. These works further differ in that Ng et al. suggest using K-means

to cluster the points on the hypersphere, while Yu and Shi favor a more complicated but

much better-performing method. Observing that groups are indicated by orthogonal

axes, we can attempt to find a rotation that best aligns the data with the canonical axes

in K-dimensional space. Yu and Shi accomplish this by a two step iterative process. First,

they assign each point to its nearest axis by non-maximum suppression. This simply sets

all elements in a vector to 0 except a single largest element, which is set to 1. This has the

effect of thresholding points to the nearest axis. Second, singular value decomposition

is used to find a rotation that best matches the points to this assignment of axes, and

the points are rotated. These two steps are repeated until convergence. Using the

orthogonality information in this way greatly improves the quality of the discretization

over K-means; and the algorithm tends to converge very quickly, making it fast as well.

3.4.2 Selecting Orthogonal Clusters

While the non-maximum suppression/rotation algorithm for assigning points to clusters

tends to give high quality results near a global optimum, it does tend to fail in some

cases, namely when the non-maximum suppression step assigns no points to an axis.

This causes the segmentation algorithm to return fewer than the requested K number of

segments. In practice this is rare, but common enough to be problematic when applying

segmentation to frames of animation. We can not fall back on K-means, as it can suffer

the same problem with stranded centers that are assigned no points, and the quality in

clustering results tend to be unacceptable in all but the simplest of cases. Hence, we

suggest an alternative approach based on Hochbaum-Shmoys clustering [49].
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The Hochbaum-Shmoys algorithm takes a greedy approach to grouping point data.

It is designed to approximately minimize the maximum distance between the center of

a cluster and any point belonging to it. Note that the algorithm is not specifically

designed for spectral clustering. There are two steps to this algorithm—selecting centers

and assigning points to centers. First, a random point is selected and labeled as the first

center. Each of the remaining K − 1 centers are then selected by picking a point that

has the maximum smallest distance to any of the centers that have been selected so far.

That is, center xi is a point p, selected by

xi = arg max
p

{

min
j∈[1,i−1]

d(xj,p)

}

, (3.79)

where d is a function that returns some measure of distance between points. All points

are then assigned to their nearest centers.

It is clear that Hochbaum-Shmoys guarantees at least one element in each of the

K segments, unlike K-means and non-maximum suppression. Furthermore, even with

a random starting point and fixed centers, this algorithm performs very well on point

data. Non-maximum suppression tends to give slightly higher (better) numerical scores

for knassoc in our experiments when it does not fall into a degenerate case, but the

difference is usually only in a handfull of points in ambiguous regions that, perceptually,

could make sense in either grouping. Furthermore, one can construct cases where the

Hochbaum-Shmoys clustering method gives a higher numerical score. Hochbaum-Shmoys

is a good candidate for automatic segmentation because it guarantees non-degenerate

clusterings, performs reasonably well, and completes in a predictable polynomial time.

We may use the orthogonality constraint on our data to further improve the quality

of clusterings, however. Rather than selecting fixed centers that are as far apart in a

Euclidean measure of distance from each other, we can select centers that are nearest

to being orthogonal to each other as possible. Using Euclidean distance to pick furthest
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centers often selects points that are outliers, as far from the true center of a cluster as

possible. These poor choices of centers can then result in points on the other side of the

actual center of a cluster being misclassified. Maximizing orthogonality between centers

better reflects the true distribution of segments, given that we know centers should be

approximately orthogonal. This can be achieved by setting the distance measure to

d(y, z) = −|y · z|. (3.80)

Hence, when points are orthogonal, their dot product will be zero, the maximum value

possible; and this value will decrease as the angle between points diverges from orthog-

onality. Once a near-orthogonal set of centers is selected, points can be assigned to the

nearest center as usual. This tends to slightly improve the results of clustering at no

additional computational cost over the standard Hochbaum-Shmoys algorithm.

One problem with this approach is that the selection of centers is highly dependent

upon the first choice, which is usually random. In some cases, especially with am-

biguous regions, this can lead to poor clusterings. Figure 3.6 demonstrates a simple

two-dimensional case where a poor initial center selection can lead to a lopsided segmen-

tation. This problem can be prevented by a good choice of an initial center, which ideally

is a point in the middle of a cluster rather than an outlier. To pick an initial point then,

we can run one or more iterations of the Yu-Shi non-maximum suppression/rotation al-

gorithm to align data approximately with the canonical axes. The point nearest to any

canonical axis can then be used as the first center for orthogonal Hochbaum-Shmoys.

The result of such an approach is shown in Figure 3.6.

In our implementation, we run the Yu-Shi algorithm until convergence before selecting

centers. This almost always occurs within two or three iterations. We then select as the

first center the point with the largest single element, which will be the point closest to

an axis. Finally, orthogonal Hochbaum-Shmoys is run to cluster all points.
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(a) (b) (c)

(d) (e)

Figure 3.6: A possible problem with random initial center selection for orthogonal

Hochbaum-Shmoys. For data with noise lying on the unit circle in (a), a poor center

choice is the red point in (b) that lies between the two clusters, which results in the

clustering in (c), with mislabeling of two points. By first trying to align data with the

axes in (d), this problem is avoided in the clustering (e).

3.4.3 Selecting the Number of Clusters

In most previous work on multiclass clustering, it is assumed that the user will set the

number of clusters K manually. This, however, would be a tiring interface for animation,

where the number of segments should be free to change from frame to frame as necessary

without explicit input from a user. Zelnik-Manor and Perona attempt to determine the

number of segments completely automatically in [100] by searching over all reasonable

K for the number of clusters that seems to give the best correspondence of points on

the hypersphere to canonical axes after an aligning rotation. This method gives good

results when the clusters are clearly separated, but in ambiguous cases that are common

in images, it will tend to select very few clusters. Furthermore, it does not give a user

any influence over K should the automatic selection be unsatisfactory.
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The K-way normalized association value cannot be used directly to choose an optimal

K because this value tends to decrease as K increases. In fact, the continuous global

optimum monotonically decreases as K increases. The discrete binary approximation

does not necessarily decrease monotonically, but it rarely increases. To see why this is

so, consider that increasing K must either introduce a new segment or make some change

to the previous configuration of the segments while adding a new one. In the first case,

all that has occurred is a split in an existing segment. This will result in two smaller

segments, so the ratio of their self association to their total association will usually be

less than that of their parent. This is analogous to the fact that in the continuous case

of a polygon, area decreases quadratically while perimeter decreases linearly when the

shape’s size is reduced. Hence, the average value of linkratio(Vl) for a segmentation will

tend to be reduced when the number of segments is increased. In the second case, where

a segment is added to a different set of initial K segments, the average link ratio of these

K segments can be no better than an optimal partitioning. Splitting a segment here will

tend to reduce this value further for the same reason as in the other case. This results in

a K-way normalized association value for K+1 no better than that for K. Therefore, the

K-way normalized association value is not a reliable indicator for an optimal selection

of K. While we could select K as that which maximizes knassoc(Γ) + f(K) for some

function f that penalizes small K, this lacks a direct relationship to the actual quality

of the segments in a given segmentation. In experiments, setting f(K) = −αK for

α > 0 gave unpredictable results in animation. The behavior of the K-way normalized

association is not consistent for different types of scenes, other than that it decreases

fairly regularly (see Figure 3.15 for the graph of this value on two different scenes).

Instead, we use a measure of suitability for each segment produced by a multiclass

partitioning and select the smallest K for which all segments meet the suitability criteria.

A segment is considered suitable if all of its nodes are sufficiently similar. We already

have a good way of measuring this, by applying two-way normalized cuts. If an optimal
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normalized cut value within a segment is below the threshold set by the user, the segment

is considered too dissimilar with itself, and K can be increased. This approach is an

improvement over setting K directly because it allows the number of segments to increase

and decrease naturally in frames of an animation without user intervention. However,

it also gives the user some control over the general aggressiveness of the segmentation.

There is an additional benefit in that this allows us to directly compare greedy normalized

cuts with multiclass normalized cuts using the same threshold value.

We can avoid searching over a large number of candidate values for K by choosing a

reasonable initial guess for K. Let κ be the initial guess for K, where κ̂ is the number

of segments to be found. If K = κ results in no segments that may be reasonably

subdivided, then K is reduced until at least one segment can be cut with the user-set

normalized cut threshold, and K = κ̂ − 1. It is generally safe to assume that further

reducing K will not result in an improved segmentation, although in some cases this

might not be true. One could search for smaller K to ensure that a single poor segment

was not just the result of a bad discretization for one value of K. Otherwise, if setting

K = κ results in some segments that can be further subdivided, we increase K until

this is not the case, and this gives us κ̂. In animation, we have a good initial value

for K, i.e. its final value in the previous frame. Even if κ̂ is not found immediately,

the computational costs of searching are not too high, since the eigenvectors for the full

condensed graph only need to be calculated once.

3.5 Results

We now consider several examples of normalized cuts using the algorithms described in

this chapter on randomly generated point data and a number of simple 3D scenes.
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3.5.1 Experiments on Point Data

To demonstrate that condensed normalized cuts give reasonable segmentations, we first

examine experiments on point data. This makes it easy to visualize affinity between

points, since the affinity between nodes is a function of the distance between points.

Consider Figure 3.7(a), where there are 50 points arranged in roughly a circle enclosing

a set of points at its center. Data laid out in this fashion is notoriously difficult to

segment using models such as Gaussian mixture models, since both clusters share the

same approximate mean. Normalized cuts, on the other hand, performs quite well on

such distributions of points.

The affinity between points here is set to exp(−δ), where δ is the Euclidean distance

between points. In this case, normalized cuts produces the segmentation one would

expect, with one segment for the points in the center and another for the points lying

roughly along a circle (Figure 3.7(b)). The original 50 points are reduced to 6 condensed

nodes with a fairly aggressive condensing threshold of 0.01. Figure 3.7(c) shows the

groups of nodes that are collapsed into condensed nodes in the same shape and color.

Notice that any two points that should be in different segments are assigned to different

condensed nodes. This is important, as it allows the condensed normalized cuts algorithm

to separate the points into different segments. Only nodes that obviously should belong

to the same segment are collapsed into a condensed node. The condensed normalized

cut algorithm gives the same partitioning as the full normalized cut algorithm (Figure

3.7(d)), with an optimum normalized cut value of 0.000132. The only difference in this

particular case is that the segments are inverted, but this is an equivalent solution. In

contrast, the näıve condensed algorithm (without internal association) fails to capture

the proper segmentation on the 6 nodes, and its optimal value is 0.000659. As shown in

Figure 3.7(e), a set of points of the circle slightly too far from the rest of the points in

the circle ends up segmented out, and the center cluster of points ends up in the same

segment as the rest of the circle.
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(c) Condensed graph.
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(d) Condensed normalized
cuts.

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

(e) Näıve condensed normal-
ized cuts.

Figure 3.7: Segmentation of a small set of point data.

Another advantage of segmenting a condensed graph can be seen in this example.

Typically, edge values below a certain threshold must be set to zero to obtain a sparse

enough matrix to make eigenvector decomposition feasible. With a reasonably condensed

graph, there is no need to threshold many small edge weights to zero; completely dense

graphs can be segmented quickly.

In Figure 3.8(a) points are distributed the same way, but at a larger scale, with 200

nodes rather than 50. Normalized cuts again gives the intuitive partitioning of points, in

Figure 3.8(b). Using the same condensing threshold value of 0.01, the graph is reduced

to 11 condensed nodes, a nearly 95% reduction in the number of nodes (Figure 3.8(c)).

Again, the condensed normalized cuts approach gives the same segmentation as the

algorithm on the full graph (Figure 3.8(d)), with a normalized cut value 0.000047 in
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(c) Condensed graph.
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(d) Condensed normalized
cuts.
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(e) Näıve condensed normal-
ized cuts.

Figure 3.8: Segmentation of a large set of point data.

both cases. Without keeping track of internal association within condensed nodes, the

segmentation result can be quite poor, as in Figure 3.8(e), where the optimal normalized

cut value is 0.001121.

Finally, we consider a set of data points clustered by various multiclass approaches.

Figure 3.9 shows a point data set that was generated by randomly selecting eight means

and variances in x and y for normal distributions, each with a random number of points.

The points for each distribution were allowed to overlap so that a single segmentation is

not clear, as the different multiclass methods tend to perform very similarly on obvious

clusterings. In fact, the “correct” segmentation in this case has a low K-way normalized

association value, due to the overlapping distributions. Six different methods for cluster-

ing the points on the hypersphere are run on this data set, in all cases K is explicitly set

to 8. Since this case does not lead to a degenerate result for the Yu-Shi non-maximum
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Shmoys.
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(f) Rotated orthogonal
Hochbaum-Shmoys.

Figure 3.9: Multiclass spectral segmentation of ambiguously clustered data.

suppression/rotation algorithm, it performs well, with knassoc = 0.6737 (Figure 3.9(a)).

The low objective value indicates the poor separation of the data; in better cases it is

much closer to 1. K-means in Figure 3.9(b) performs quite poorly, with three groups of

distant points being segmented together. Perhaps worse, it only assigns points to seven of

the eight segments, so its objective value is meaningless. The gradient descent algorithm

almost succeeds, but one segment is cut in two by another segment (Figure 3.9(c)). This

failure leads the objective value to drop to 0.6707. While this value is not far from that

of the Yu-Shi algorithm, perceptually it is clearly much worse. Furthermore, the running
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time for gradient descent in this case is around 3 seconds, whereas the other methods

tend to take from 0.2 to 0.5 seconds, with K-means taking the longest of them. Such per-

formance would be problematic for interactive segmentation. The second row of plots are

all variations on Hochbaum-Shmoys in spectral clustering. Figure 3.9(d) uses the Euclid-

ean measure of distance to select cluster centers with the first center randomly selected,

resulting in knassoc = 0.6703. It is surprising that this is a numerically worse score

than that of gradient descent, when the results appear much more reasonable. While

the misclassifications are not as obvious in this case, there are a small number of points

that have a large effect on the K-way normalized association value. The use of negative

dot product as the distance measure for selecting centers greatly improves the numerical

performance of Hochbaum-Shmoys for this data (Figure 3.9(e)). Even though we use the

same initial center, the objective value for orthogonal Hochbaum-Shmoys is 0.6721, since

a few of the outliers are reclassified into more appropriate segments. Finally, rotating

the space by the Yu-Shi algorithm to select the first center as the point closest to any

axis give the results in Figure 3.9(f). This results in a slightly more uniform distribution

of points to segments in ambiguous regions, which results in knassoc = 0.6740, a value

even better than that of the Yu-Shi algorithm. While this will not always be the case,

the two algorithms perform very similarly in most cases, with the rotated orthogonal

Hochbaum-Shmoys having the advantage of guaranteeing that at least some points are

assigned to all segments.

3.5.2 Experiments on 3D Scenes

Now we examine results of condensed normalized cuts clustering on a number of 3D

scenes.

Figure 3.10 shows a simple geometric scene, made up of three groups of three objects

clustered closely together, with the groups lying roughly along a line in space. In Figure

3.10(a), a view showing the separation between the groups of objects is given. This
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(a) The scene viewed from the side. (b) One plausible segmenta-
tion.

(c) Another segmentation
with larger depth bias.

Figure 3.10: A segmentation of a simple geometric scene, emphasizing segmentation by

depth.

scene is rendered viewing in the direction of the line that the groups of objects lie on

to demonstrate segmentation using only depth information. In the first segmentation

(Figure 3.10(b), segments indicated by color), the depth weight (wz) is 40, and all other

user-assigned weights are zero. The condensing threshold is set to approximately 2/3,

at 0.67, and the normalized cut threshold is set to 0.05. Objects in the foreground

are each given their own segment, while the two groups of objects in the background

are become exactly two clusters. This is a result of representing depth as 1/(z + β),

which tends to separate elements closer to the viewer more than those further away.

Another possible segmentation in Figure 3.10(c), where the foreground group of objects

are clustered together, as the two groups in the background are. This is due to increasing

the value of β to 8, which treats all objects like they are further away, so the depths of the

foreground elements are made to appear more similar to each other. In both cases, the

segmentation is reasonable, partitioning objects as one would expect, even without using

the available object ID information. It was a trivial matter to find weights to give the

desired segmentations, and they are fairly robust to perturbations. This scene takes about

0.36 seconds to segment on a 1.6 GHz Intel Centrino processor, including generating all

reference images, building the graph, and segmenting it. This is a tremendous speed up
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over the minutes normalized cuts can take running on a full graph corresponding to an

image. The code that performs the segmentation has not been significantly optimized, so

it is likely that this performance may be improved with a more careful implementation.

In Figure 3.11, we examine a more natural scene, consisting of a cottage surrounded

by trees in a forest and a large bush. In this case, explicit group IDs are assigned to

objects—the cottage and door are two groups, the trees and bush are another two groups,

and the sky and ground are also groups. The sky is not modeled as part of the mesh,

rather, any background pixels automatically take the sky color specified by the user and

are treated as being part of a single polygon face of a unique object, with depth set to a

constant value. Here, segmentation parameters are set as follows: color weight (wc) is 10,

depth weight (wz) is 40, depth bias (β) is 4, and group weight (wg) is 2. The condensing

threshold is set to 0.4, reducing this scene’s condensed graph to 30 nodes, and with a

normalized cut threshold of 0.02, this is clustered into 15 segments (Figure 3.11(b)). A

visualization of the face adjacency graph and condensed graph are given respectively in

Figures 3.11(c) and 3.11(d), with lighter edges indicating those that are cut and darker

edges indicating those that connect nodes assigned to the same segment. The edges that

connect to a node far out of view to the left belong to the ground plane, and those that

connect to a node below the field of view belong to the sky. This scene is more complex

than the first example, but it still takes only about 0.59 seconds to render and segment,

well within the reach of interactive rates.

Figure 3.11(e) demonstrates the importance of group ID information by setting wg =

0. The ground segment then swallows up nearly all of the trees, due to the similar shades

of green and little difference in depths. A determined user can find a segmentation

close to what is easy to produce with group IDs by tweaking weights and thresholds,

but it is an entirely unrewarding experience. Figure 3.11(f) shows results after doubling

wc, lowering the condensing threshold to 0.35, and raising the normalized cut threshold

to 0.05. Reducing the condensing threshold is necessary because the condensed graph
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(a) The rendered image to be segmented. (b) A segmentation of the scene.

(c) The face adjacency graph. (d) The condensed graph.

(e) A segmentation without group information. (f) A segmentation without group information,
but with other changes to parameters (see text).

Figure 3.11: A segmentation of a scene made up of a cottage and trees surrounding it.

A particular segmentation is achieved by modifying edge weights by assigning objects to

groups.
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becomes quite large with the particular setting of weights used, however reducing it much

more than 0.35 results in some inappropriate collapsing of edges. Even so, the condensed

graph is still much larger than it is with wg = 2, with 85 nodes rather than 30. The

normalized cut threshold must also be raised to allow more cuts to be made which would

otherwise be over the threshold. Even so, we lose the door in the cottage’s segment,

and the bush is combined with the ground—both due to similarity in color and depth.

Without giving users an explicit way to tag objects into logical groups, such cases can

be difficult to avoid.

Next, we consider an example utilizing importance assignments in Figure 3.12. The

scene is modeled as a dense urban setting, with pedestrians, trees, and tall buildings

with several floors of windows (Figure 3.12(a)). Here, the plant life all belong to a

single group, while buildings, windows, pedestrians’ bodies, and pedestrians’ spherical

heads are four separate groups, in addition to two groups for the sky and ground. With

wc = wo = wg = 1, wz = 60, condensing threshold 0.4, and normalized cut threshold

0.033, we find the segmentation in Figure 3.12(b). This is an oversegmentation of the

scene, with far too many windows and buildings partitioned out in the background,

cluttering the segmentation image. This may be fixed by assigning lower importance to

the buildings and windows. Figure 3.12(c) shows the result of using a constant importance

map of 0.5 for the buildings and windows, with importance equal to 1.0 everywhere

else, and setting ws, the weight for importance, to 1.0. This produces a much cleaner

segmentation of elements further from the viewer, without disrupting the segmentation

of other objects in the scene—the trees and pedestrian are unaffected by the changes. It

could take significantly more time to achieve a similar result using only the other available

parameters. Lowering importance of objects is an easy, direct way to get objects to be

segmented together. This makes it a good complement to the group parameter, since

raising wg increases separation between groups and raising ws increases cohesion between

unimportant objects.
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(a) The rendered image to be segmented.

(b) A segmentation of the scene. (c) A segmentation of the scene using impor-
tance to remove unnecessary detail.

(d) The importance image. (e) The depth image.

Figure 3.12: A segmentation of an urban scene. Excessive detail can be removed by

assigning objects to be unimportant so they will be segmented together.
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(a) The rendered image to be segmented.

(b) Greedy normalized cuts. (c) Multiclass normalized cuts.

Figure 3.13: Greedy and multiclass segmentations of a forest scene using the same para-

meters.

Finally, we compare greedy normalized cuts, using the recursive two-way algorithm,

and multiclass normalized cuts, using rotated orthogonal Hochbaum-Shmoys. Figure

3.13 shows the cottage scene with the view pulled back to show more of the forest. The

same segmentation parameters are used except the depth bias is set to zero to allow

more segmentation to occur. Otherwise, there is no difference at all in the segmentation

produced by the two approaches. Even with this parameter set to encourage more seg-

mentation, we find very little difference in the two partitionings. Condensing results in

108 nodes, and both algorithms produce exactly 53 segments. There is one significant

difference, however, which is highlighted in the insets of the figure. Greedy normalized

cuts segments out one single pixel from a tree that is distant and much darker than the
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(a) Greedy normalized cuts. (b) Multiclass normalized cuts.

Figure 3.14: Greedy and multiclass segmentations of an urban scene using the same

parameters.

surrounding trees, while the multiclass algorithm takes the more reasonable approach of

ignoring this outlying pixel and instead cutting a more significant tree from the back-

ground trees. This indicates a problem in the greedy approach, where the algorithm

can produce graphs to segment in strange ways, whereas the global multiclass method

tends to ignore such outliers. The problem is also evident when we examine the K-way

normalized association values for the two different approaches. For greedy two-way nor-

malized cuts, knassoc = 0.978, but for the multiclass case, knassoc = 0.996. On our test

computer, the multiclass approach takes about 0.75 seconds and the greedy approach

takes about 0.8 seconds to produce this segmentation.

In another example (Figure 3.14), we revisit the urban scene. The parameters are

set to the same values as before, except importance is not used. The normalized cut

threshold is set lower to 0.02, to reduce the amount of segmentation slightly; the results

of this change in threshold can be compared with Figure 3.12(b). It is interesting that

the multiclass result for this setting of parameters is closer to the greedy result with the

higher normalized cut threshold than it is to the greedy result with the same threshold.

The number of segments given by the multiclass approach tends to be the same as or

higher than that of the greedy approach. In this case, 209 condensed nodes are reduced



Chapter 3. Segmenting the Image Plane 71

0 10 20 30 40 50 60 70 80
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

(a) Forest scene.

0 50 100 150 200 250
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

(b) Urban scene.

Figure 3.15: Graphs of knassoc for different values of K. The blue line is the objective

value for the solution given by multiclass normalized cuts for a fixed K, the red circle

is the result for greedy two-way recursive normalized cuts, and the green circle is the

solution selected for multiclass normalized cuts.

to 102 segments for greedy normalized cuts or 154 segments for multiclass normalized

cuts. In this case, K is quite different for the two algorithms. This may seem a bit

counterintuitive, but K for the multiclass algorithm tends to be greater than or equal

to that for the greedy algorithm. This is because greedy normalized cuts will try to

decrease the quality cuts within segments, since it attempts to maximize association

within them at each step. Multiclass normalized cuts, on the other hand, will find a

near globally optimal set of cuts, and it will raise K as long as any one segment can be

divided again. We cannot compare the K-way normalized association value for different

values of K, since is decreases as K increases, but even so, this metric is higher for

the multiclass algorithm than the greedy version, with knassoc = 0.985 rather than the

recursive algorithm’s knassoc = 0.971. If we graph the K-way normalized association

value for different values of K, it is clear that there is a better segmentation for K = 102

that the greedy algorithm could not find (Figure 3.15(b)). Despite the higher number

of segments, the multiclass algorithm runs significantly faster on this scene, taking 1.4
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Figure 3.16: The number of segments that can be subdivided with the normalized cut

threshold (vertical axis) for a given number of segments, K (horizontal axis), in multiclass

normalized cuts.

seconds as opposed to 2.1 seconds for the greedy algorithm. For a single frame, we simply

set the initial number of segments to half the number of condensed nodes and search from

there.

Even without a good estimate of the initial number of segments, the multiclass method

typically performs faster than the greedy recursive algorithm. This is because eigenvec-

tors for the graph need only be computed once for the multiclass algorithm. Then the

appropriate number of precomputed eigenvectors can be selected for each value of K.

With greedy normalized cuts, eigenvectors need to be computed for every cut, since the

eigenvectors cannot be reused for the subgraphs separated by a cut. However, in the

multiclass case, we still must compute eigenvectors for at least some of the partitions

generated to determine their suitability. This test to determine segment suitability lim-

its the speed of this approach somewhat. Even so, when animating several frames, the

knowledge of the previous frame’s number of segments will usually boost the speed of

the multiclass algorithm. The greedy algorithm, on the other hand, cannot benefit from

such information from the previous frame. As there is cost associated with clustering the
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rows of the K-column eigenvector matrix and checking the quality of the segmentation,

an improved guess for K can only improve the performance of multiclass clustering.

3.6 Summary

This chapter has presented a fast approach to normalized cuts based on the assumption

that very strong edges in a graph often should not be cut by a segmentation algorithm.

Condensing graphs by orders of magnitude allows the normalized cuts algorithm as well

as its multiclass counterpart to be run without changing the original objective func-

tion, only cut constraints are added to the original graph. A method of setting edge

weights that gives a user influence over the resulting partitioning for scenes rendered

from 3D meshes allows a user to guide the segmentation if it is not performing exactly

as desired. In experiments, the condensed segmentation algorithm is shown to work

reasonably well, segmenting out objects even without explicit information about which

pixels belong to which object and producing partitionings of the image plane that reflect

something meaningful about the scene. With a solid segmentation algorithm developed,

we may now consider how artistic rendering styles can be enhanced with segmentation

information.
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Animation

“Animation can explain whatever the mind of man can conceive. This

facility makes it the most versatile and explicit means of communication

yet devised for quick mass appreciation.”
– Walt Disney

While the segmentation techniques presented in the previous chapter can be applied

to individual frames independently to produce animation, the results will typically be

rather poor. Segmentation across frames in all but the most simple cases will exhibit

unstable behavior that results in flickering of segments. In this chapter, we consider an

approach to reducing instabilities in segmentation across frames for interactive animation.

4.1 Temporal Coherence in Segmentation

When rendering an animation sequence, there is no guarantee that consecutive frames will

yield consistent segmentations. This is particularly apparent for images in which there

are multiple ways to segment a region that have nearly optimal normalized cut values,

since slight changes in the image may lead to very different optimal segmentations. This

often occurs when the number of pixels on the boundaries between two possible segments

increases or decreases slightly, as this can have a significant impact on the weight of

outgoing edges relative to the internal edge weights for a small region.

Other works have tackled this problem by segmenting a volume of video all at once

[20, 91], so similarity within a region is just as important between frames as it is within

a frame. This is not an option here because we would like to produce scenes that can be

74
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Figure 4.1: An example of an unstable segmentation. A small change in camera orienta-

tion can cause the number of pixels in the two darker boxes to change, affecting which

one has a larger association. Even though the visual difference in these two images is

very small, the segmentation is quite different.

rendered at nearly interactive rates, and in the case of interactive environments, there

is no way to account for what changes in the scene might occur in future frames. We

instead approach this problem by attempting to enforce coherency between two adjacent

frames only.

4.2 Coherency for Real-Time Graph Segmentation

4.2.1 Coherency Nodes

In order to get coherence in segmentation between frames, we introduce coherency nodes

to the condensed graph. Each coherency node corresponds to a segment from the previous

frame (Figure 4.2). Coherency nodes can be motivated as follows. Suppose we were

segmenting an entire video sequence at once. In addition to constructing graphs within
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each frame, graph edges would be introduced between nodes in adjacent frames that

correspond to the same polygon, with a user-specified weight wk. Since we only segment

one frame at a time and have no knowledge of the future, graph nodes for all future

frames must be discarded. Moreover, since the segmentation for the previous frame is

already known, we can collapse the graph for the previous frame into a single node per

segment—called a “coherency node”—while discarding older frames. We can then apply

the principles of condensed graph segmentation by keeping track of internal association

for the coherency nodes to get a segmentation problem equivalent to segmenting two

frames together under the constraint that the previously selected partitionings cannot be

modified.

In practice, this graph is implemented as follows. Suppose we have a segment in the

previous frame, t−1, with an associated coherency node labeled Q. Then this coherency

node corresponds to the set of nodes within its segment in frame t−1, and Q is connected

by an edge to each condensed node in frame t that corresponds to a node Q represents.

The weight of this edge is wkni, where ni is the number of pixels covered by the face in

the current frame. Additionally, Q has a self-edge with weight equal to the association

within its segment from frame t − 1, except edges to coherency node of frame t − 2 are

ignored, if there are any.

Note that, often, some faces of a mesh will not be rendered to the reference images

because they occupy less than a pixel, and so they will not be assigned to a segment. This

can lead to many faces being considered unsegmented, even when they are surrounded

by polygons that were all assigned to the same segment. Hence, in the following frame, if

such a polygon becomes visible, it will not get an edge to any coherency node, although

it clearly should belong to the same segment as the polygons around it. To address

this, assignments of segments are propagated to nearby unsegmented polygons, so that

unassigned polygons will be grouped with their neighbors and thus contribute to the

coherency edges.
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Figure 4.2: Using coherency nodes for temporal coherence. (a) Frame t−1 is segmented,

and the current frame t has its graph constructed. (b) Nodes in frame t have edges

connected to their corresponding nodes in the previous frame. (c) Segments in frame

t − 1 are condensed to coherency nodes. (d) The frames are segmented together.

4.2.2 Coherency Bias

Since introducing coherency nodes has the effect of segmenting two adjacent frames

together under the constraint that the segmentation from the previous frame cannot be

modified, the segmentation for the current frame is biased to be similar to that of the

previous frame. A consequence of this is that rendering a single frame alone may appear

very different from rendering that frame in an animation with coherency enabled. In cases

where in an individual frame there are subtle details that are segmented out by cuts with

values close to the normalized cut threshold, these features can be lost in animation due
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to the coherency biasing the frame to be like the previous frame, which may not have

segmented out the details. Hence, the user might have to find the right balance for wk.

Setting it too high can result in very little variation in detail between frames—one might

zoom in on objects that were far away, only to find smaller segments never appear or

appear only briefly before disappearing off screen. On the other hand, setting wk too low

can result in instability in segmentation between frames, with segments flickering on and

off due to slight changes in camera orientation.

This can be viewed as being due to segments not being allowed to appear until they

are strong enough to be considered quite stable. One way to address this problem,

then, is to lower the normalized cut threshold when selecting segmentation parameters

so that only very strong segments appear when viewing a single frame. This threshold

can be raised to some acceptable level for animation to get more predictable behavior

in frame-to-frame segmentation. More tools for defining a segmentation could also help

artists avoid the problem of coherency bias if they can create more separation between

graph nodes that belong in different segments. However, the danger in this is that the

additional input could just result in making it less clear exactly what is having an effect

on the segmentation.

4.3 Results

Figure 4.3 shows adjacent frames from an example of an animation rendered twice, once

with coherency on, and again with coherency off. The animation consists only of the

camera zooming in on a small village, with windows on buildings appearing as the camera

gets closer and they take up enough space to warrant their own segment. Without

coherency, windows flicker on and off unpredictably; but with coherency, all windows in

a segment tend to appear together. The frames for the coherent version of the animation

are shown starting 10 frames later than the incoherent version, due to the coherency bias
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Figure 4.3: A simple scene with average color segment shading as a camera zooms in.

Top row: Segmentation without coherency. Bottom row: Segmentation with coherency.

delaying the appearance of the windows.

4.4 Summary

We have introduced a strategy of segmenting the current frame with the previous frame

using coherency nodes to prevent instabilities in segmentation due to small scene per-

turbations. This method biases the current frame to be like the previous frame, so an

artist must keep this in mind when choosing segmentation parameters, since an image

with coherency enabled will often not be segmented exactly the same way in the middle

of an animation as it would have been as a single stand-alone image. Next we propose

artistic styles for segmentation as well as the considerations for animating artistic styles.
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Artistic Styles

“I am enough of an artist to draw freely upon my imagination. Imagi-

nation is more important than knowledge. Knowledge is limited. Imag-

ination encircles the world.”
– Albert Einstein

In this chapter, we demonstrate several novel artistic styles based on segmentation.

Although some of these rendering techniques are quite simple, together they show that

segmentation can be used as a basis for a variety of visual effects that would otherwise

be difficult to reproduce. We also consider how artistic effects may need to be modified

to work well in animation.

5.1 Solid Shading

A basic rendering style is a cartoon rendering style, which shades each segment in a

constant color, as employed in many previous works in NPR that have applied constant

shading to segments. Figure 5.1 demonstrates examples of this segment coloring, where

each segment is rendered with the average color of the pixels inside of it. We also exper-

imented with using median color, but this can cause the color to change unexpectedly

with small perturbations of the camera. When a segment contains distinct colors with

approximately equal distributions in a segment, the median color often will not be stable

throughout an animation. As long as segments are sufficiently uniform in shade and dif-

ferent segments do not make too much use of the same colors, the effect can be suitable

for simplifying a picture. Otherwise, if many segments are made up of very similar colors,
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Figure 5.1: Solid, average color segment shading.

segment boundaries can be difficult to see, and more complicated styles might be more

suitable.

In the next section, we add contours to emphasize shape and segmentation, both of

which can be lost with only segment color as a visual guide to the image composition.

5.2 Contours

5.2.1 Contour Detection

As discussed in Chapter 2, there are several available techniques for rendering contours

on polygonal meshes. While there are methods that allow hardware acceleration for very

fast contour rendering, these techniques tend to be inflexible [28, 77]. For example, they

often only give a single style of contour, with a constant shade and thickness, because we

cannot get an explicit chain of contour edges to paint strokes on. More recent hardware

contour rendering work has shown more potential [67], but it still is limited to local

contour edge detection without chaining. Therefore, we use a software data structure to

store contour chains.

We use object space detection of contours, specifically using Hertzmann and Zorin’s

approach [48], which avoids many of the problems associated with finding contours on



Chapter 5. Artistic Styles 82

mesh edges between front and back facing polygons. This finds contours through faces

rather than on edges by interpolating v · n across mesh edges to find its zeros, where v

is the view vector and n is the normal. The curve along v · n = 0 gives us the contours

of some smooth shape that the triangle mesh approximates. This approach is only

applicable for meshes that approximate smooth surfaces, however, so the user is allowed

to tag polyhedral objects in a scene which then have contour edges detected in the usual

object space fashion of those edges between front and back facing polygons. We assume

that such polyhedral meshes will have long enough edges so that chaining is unnecessary.

To have face adjacency data quickly available, we use a halfedge data structure for storing

all mesh data [7]. This is especially useful for chaining, since contours cross into adjacent

faces.

Once the contour chains are found, they must be broken into completely visible or

completely hidden chains. One potential change in visibility is where one chain passes

under another. These image space intersections can be easily detected in object space.

If one segment starts at a1 and ends at a2 and the other goes from b1 to b2, assuming

the viewpoint is at c, we intersect the segment from a1 to a2 with the plane formed by

b1, b2, and c and check if the intersection point is between a1 and a2. If so, we do

the same for b1 and b2 with the plane formed by a1, a2, and c. If that intersection is

between b1 and b2, we can break the chain at the intersection point furthest from c.

Another place where chains must be broken is at cusps, that is, points on the contour

chain where the curve’s tangent is in the viewing direction. Detecting these points on our

piecewise linear contour chains is possible by expressing the surface tangent in terms of

its curvature and finding intersections of our contour chains with another set of curves on

the mesh. These curves are the zero set of the radial curvature, given by the cusp function

C = κ1(v · w1)
2 + κ2(v · w2)

2, where κ1 and κ2 are principle curvatures and w1 and w2

are corresponding principle curvature directions. To find these cusps, we require some

estimation of curvature at the mesh vertices. For this purpose, we use Rusinkiewicz’s
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algorithm which estimates curvature at each face and then computes it at the vertices as

a weighted average of the adjacent face’s curvatures [79].

In practice, we first detect smooth contour chains on objects tagged as smooth. These

chains are broken at cusps, and then polyhedral tagged objects have their contours de-

tected and added to the list of chains. All of the chains are clipped against the viewing

volume, and the remaining chains have occlusions detected by finding and breaking in-

tersections of contour chains as described above. The image plane is broken up into a

grid to prevent excessive checking of contour segments against segments that they cannot

possibly intersect. Points along the chains are sampled to determine their visibility, and

finally quad strips are mapped to the visible chains, displaying a texture assigned by the

user.

5.2.2 Segment Boundary Contours

This gives us all the contours in a scene, but it does not address the segmentation in any

way. We combine the segmentation information with the contour chains by optionally

rendering only the boundary of each segment. This is in contrast to the usual practice

of rendering silhouettes at the level of objects in a scene. We accomplish this by making

two small changes to the contour rendering pipeline.

First, when searching for contour intersections, if two intersecting contours belong to

the same segment, then the contour closer to the viewpoint is also broken. A contour is

considered to belong to the same segment as the faces it passes through. Contours can

be broken if the segment ID changes between adjacent chain segments, although this is

rare in practice. This gives us an additional property on the contour chains—not only

are they all entirely visible or hidden, but they also each belong to a unique segment.

Second, one additional step after the chain visibility test is added. A chain is checked

to determine whether it is interior to a segment by sampling the segment ID of pixels

on either side of the chain. If the segment ID matches at all sampled pixels, the chain
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Figure 5.2: Left: All contours rendered in a purple watercolors style on a scene with

some simple geometric objects. Center and right: Segment boundary contours with two

different segmentations.

is considered interior to that segment; and it can be hidden or tagged to be rendered

in a different style. This is one reason for constructing a face adjacency graph, which

constrains each face to belong to a unique segment; it greatly simplifies finding interior

chains in this fashion.

This pixel sampling method for determining whether a contour is interior to a segment

or not does lead to a small number of contours being incorrectly labeled, but the errors

are typically not visible, and the effects can be reduced by increasing the image resolution.

The planar map algorithm of Winkenbach and Salesin [94] could also be used to compute

these contours exactly, although at significant computational cost.

Rendering contours on the boundaries of segments greatly increases the perceptual

effect of the segmentation, clearly marking where segment edges are found. Figures

5.2 and 5.3 compare examples of rendering all contours and only contours at segment

boundaries. Clutter is reduced in these pictures by only rendering contours at segment

boundaries, and the overall segmentation is brought out more clearly than when using

color alone. This also produces something of a flattening effect, making the pictures

appear to be constructed in a 2D plane rather than rendered from 3D models, which is

a pleasing effect for artistic rendering.
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Figure 5.3: Left: All contours rendered on segmented scenes. Right: Segment boundary

contours rendered on the same scenes.

5.3 Watercolor

A simple watercolor style can be created simply by adding Perlin noise [72] to the image,

desaturating the average color each segment is rendered in, and darkening edges between

segments. Figure 5.4 shows examples on a number of scenes. As simple as the algorithm is

to generate these watercolor emulating images, the effect is striking. The noise models the

variation paint absorption that is caused by the texture of the paper. The desaturating

of the colors makes them appear more muted, as dried watercolors are often not made up

of extremely vibrant colors. Edge darkening models an effect in watercolor that occurs

due to surface tension in the water that prevents it from spreading at the boundaries

when painted over a dried wash [23]. While more complicated algorithms are possible,
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Figure 5.4: Left: Color reference images. Right: Segmented images with a watercolor

style.
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this approach is a simple extension to solid-shading segment coloring, so it benefits from

any enhancements we may make to that algorithm, such as for animation, and it is not

computationally demanding. The current implementation takes too long for interactive

applications, but with some tuning, it could probably be optimized to run at speeds that

are not too prohibitive to live user interaction.

5.4 Oil Painting

Painterly rendering styles are also possible within the framework of segmentation. In

fact, oil painting simulation is one of the more compelling applications of segmentation

in NPR. In this style, each segment is filled with paint strokes in two passes. The first

pass attempts to fill each segment with strokes as follows. Very large segments are filled

with large horizontal strokes, similar to the background in Figure 1.2. Smaller segments

are filled by drawing smaller strokes in horizontal, vertical, or diagonal directions with

random variations in direction. These strokes may terminate by reaching the edge of

their segment or by reaching a maximum stroke length. The second pass emphasizes

segment boundaries, similar to the way strokes in Figure 1.2 carefully follow the segment

boundaries that we manually highlighted.

To compute these boundary strokes, a distance field is computed for each segment

using Felzenszwalb and Huttenlocher’s linear-time algorithm [35]. Let R be the radius

of the brush stroke size. A pixel with distance R from the segment boundary is located,

and, starting from this pixel, a path is traced in the distance map that maintains this

distance R to the boundary, within a small threshold. The stroke ends when it cannot

be continued without doubling back on itself or when a maximum length is reached.

All strokes are then subsampled by a factor of R and rendered using Hertzmann’s relief

texturing algorithm, which gives a bump-mapped effect by using a stroke texture to

generate a height field which is lit in software [46]. The strokes are rendered against a
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Figure 5.5: Left: Segmented scenes in an oil paint style. Right: The same style with a

black background.
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colored background, which is determined by the user-selected style. If the color reference

image is used as a background, then holes in the strokes are filled with reasonable colors,

so that gaps between strokes are not obvious. If a black image is used for a background,

then irregular black gaps appear between segments in a manner similar to those in Figure

1.6. These gaps do not simply correspond to thick segment boundary contour renderings,

since paint covers the gaps irregularly, giving them the character of being under the paint,

rather than over it as contours would be.

5.5 Temporal Coherence in Artistic Styles

For a style as simple as constant color shading for each segment with coherent frame-

to-frame segmentations, difficulties can still arise in animation. We have selected the

average color to shade segments, even though intuitively the median might seem to give

a better representation of the color of a segment. After all, a few outliers that are very

dark or very bright can throw off the average color, making the entire segment lighter or

darker even though only a few pixels might be affected. While this is not a problem with

the median color, in experiments, it was found that in many cases there can be a two

shades in a segment with nearly the same number of pixels. For example, a log cabin

might be a light shade of brown in the direction of a light source above, with about an

equal number of dark brown pixels in shadow. Small changes in the camera can result

in the median changing from light to dark and back very rapidly. In other words, the

median color can be unstable in some cases, but average color tends to change more

gradually with perturbations of the camera.

Even using average color, there are situations in which the segment colors can change

rapidly in distracting ways. An example of this can be constructed with a segment that

is a light color in one area, with the rest a darker shade. Then if the lighter area becomes

occluded, say by rotating the camera such that part of the segment goes out of view, this
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will cause the segment to suddenly become dark, when before it was a blend of the light

and dark parts of the segment. Also, consider the case where a segment bifurcates into

two by being split by some new occluding segment. As soon as the bifurcation occurs,

unless the two new segments happen to have very similar shading, their color will change

immediately. So even in this simplest case of constant segment shading, we find many

possible causes of flickering and other undesirable effects.

Rather than sampling segment colors for using the average or median, one could

assign each object a single color. Then, if objects are sorted in a list to indicate their

priority by the user, the most dominant object in each segment could determine the

segment color. This would likely prevent a lot of the problems apparent in shading based

on sampled colors, but this comes at the cost of only allowing a small list of colors to be

assigned to segments. This would make it difficult to tell where segment boundaries are,

since many segments would be exactly the same color. Furthermore, the user must be

burdened with sorting objects by priority, when at times no relationship is clear between

two objects. Segments would still “pop” as objects change segments, causing segment

colors to suddenly change between frames.

One possible modification for reducing these distracting effects is to track which co-

herency nodes are segmented with each segment in the current frame. Then the colors

used in each of these previous segments can be averaged with the color for the cur-

rent frame, to produce more subtle blending effects in the time domain, to reduce the

sometimes harsh all-or-nothing nature of segmentation in animation. This should give a

smoothing effect similar to that of [20], which uses video volumes to prevent such jumps

in shading.

For our watercolor simulation, since segments are based on a single color, they can

benefit from such a color blending system. Otherwise, we create watercolored animation

by using the same noise-generating function across frames, to prevent what could appear

to be a distracting static. It might also be interesting to attempt to translate and zoom
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Figure 5.6: Frames of a scene recreated in 3D to model that of Figure 1.6 rendered in a

watercolor style with coherency.

the noise function to match the camera movements, but such motions might appear

unnatural. It is difficult to know what the “right” way to portray animated watercolors

is when this is a medium that is so difficult to animate in reality. Figure 5.6 reimagines

the hand-painted animation of Figure 1.6 as a watercolor animation, using segmentation

of frames similar to the way the artist did in the original work.

For artistic coherency in stroke-based styles, such as our oil painting style, a more

complicated algorithm would be required. There are a few possible approaches beyond

simply painting each frame independent of decisions made in previous frames. The work

of Hertzmann and Perlin [47], which paints strokes to create painterly representations

of video, provides some insights into what works in their experiments. One possibility

is to paint over the previous frame, only updating regions that have changed. While

this would seem the most natural approach, it is not consistent with our strategy of

carefully painting around segment boundaries, and in Hertzmann and Perlin’s work, it

is noted that this produces an “effect of a continually smudged image plane,” which is
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not always pleasing. They instead move brush strokes according to optical flow, similar

to the approach taken by Litwinowicz on smaller strokes [62]. An analogous approach in

the context of our oil painting system would be to attempt to attach boundary strokes to

segment boundaries, while moving and resizing interior fill strokes to match the changes

in segment shape. Then new strokes would only be added where they are needed.

5.6 Summary

This chapter has introduced a number of styles that may be applied to segmented scenes.

We have also identified some sources of instabilities in artistic styles that can occur even

with an ideally segmented animation, and we have discussed some possible solutions to

these problems. While these styles are all fairly simple, together they demonstrate that

segmenting the image plane is conducive to a broad range of styles, rather than being

tied specifically to one or two techniques. Many of the styles presented in other works,

discussed in Chapter 2, may also be applied to segments by treating each segment as a

separate image with irregular borders. For example, the physically simulated watercolor

model presented by Curtis et al. [23] could be applied to each segment, allowing overlap

by sorting segments for rendering based on some average depth criteria to obtain real-

istic looking layering between segments. This could give much more realistic appearing

watercolor renderings, at a cost of significant computational time. Another possibility

is using segment boundaries as edges to initialize a rendering algorithm based on the

placement of edges between regions, such as Hausner’s decorative mosaic algorithm [44].

The research prototype used here only allows one style per scene. An interesting

extension might be to allow an artist to assign segments different rendering styles, either

based on simple criteria such as depth or segment size, or hand assigned by the user.

However, such a system that gives users detailed control over segment properties might

be difficult to extend reliably to automatic animation.
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Conclusion

“Art, like morality, consists of drawing the line somewhere.”

– G.K. Chesterton

This thesis has presented algorithms for creating segmented artistic renderings of

3D scenes. This system produces image and animated representations of scenes that

abstract out distant, unimportant, and cluttered scene detail while simultaneously pro-

viding a segmentation that can act as a basis for various artistic styles. A graph-based

approach to segmentation is used for its flexibility in defining affinity between points

over. Either greedy or multiclass normalized cuts may be applied on compact represen-

tations of graphs to accelerate the segmentation, approaching interactive rendering rates.

These accelerated segmentations often result in no loss of quality in segmentation while

reducing the graph size by orders of magnitude. Segmentation takes place in the image

plane rather than object space because it corresponds to the types of 2D segmentations

that are often seen in art. An unexplored advantage of the conceptual simplicity of this

approach is that interesting projection effects can be applied before the rendering and

segmentation step with no need for any other modification to the system. Nonlinear pro-

jections, such as those described in [18], could be used to produce the reference images

to get unique artistic styles.

A variety of simple styles are proposed, some of which would be very difficult to

model without an explicit model of segmented image regions. An area for future work

is to produce more convincing, high-quality artistic styles that are particularly suited to
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this segmented framework. This system has been demonstrated to be suitable for the

purposes proposed by testing it on simple 3D scenes. Rendering large scenes without

abstraction leads to substantial clutter and detail that we would not expect from artistic

imagery. With further work, the approach presented here should enable live interaction

with scenes that automatically and adaptively vary the abstraction level to match the

scene, as determined in advance by an artist.

An important problem is to perform segment-based rendering in real-time. Some

speedup can certainly be gained by a more finely-tuned implementation. For example,

the current system attempts to render each object and compute contours on every object

in the scene; there is no scene-level culling before the rendering step. This can result

in a non-trivial amount of computation being wasted finding contours that will only

be thrown away. One possibility is to design 3D culling and level-of-detail algorithms

appropriate for segmented scenes. This would be extremely desirable, since one of the

main applications this work is targeting for segmentation is in creating artistic virtual

worlds. Further, the artistic styles presented here in some cases take quite a while to

render, speedups here would be beneficial to frame rates. Since applying an artistic

style to a given segmentation can take place in parallel with the segmentation of the

next frame, the current trend in parallelizing processing hardware could be extremely

beneficial to animation speed. Indeed, a carefully designed rendering style might be

able to process each segment independently, enabling the use of several processors to

simultaneously work on a single frame.

Another critical problem that is not fully addressed by this work is to create a good

interface for designing styles. In the current implementation, a user has numerous sliders

to manipulate, corresponding to weights that affect how affinity between points is defined

as well as condensing and normalized cut thresholds. It is difficult to imagine such an

interface being used in a production environment where precise control over a scene is

necessary or in games where no user intervention can be expected. Segments would fit
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very naturally into the procedural NPR shaders of Grabli et al. [41] as a fundamental

primitive. Rather than using NPR shaders only on contour data structures, it would

be interesting to create a shader system that presents segment regions in such a natural

way to the designer. A more challenging problem is to design segmentation styles by

examples with a WYSIWYG interface [53]. One can imagine an artist being able to

guide a segmentation at various keyframes by indicating what points in a scene must

belong to different or similar segments without ever seeing the actual parameters used

by the segmentation algorithm, similar to current systems that allow a user to quickly

indicate a few points that belong to certain regions, while the precise region boundaries

are computed automatically [11, 59, 78].

While there are many directions this work could go in the future, the system presented

here represents a promising first step in segmentation-based real-time artistic rendering

systems. Many styles remain to be explored under this framework, but this is an ad-

vantage rather than an incompleteness, as this segmentation approach gives the NPR

designer and user such flexibility beyond a single artistic appearance or type of scene. A

future challenge that goes far beyond this work is to design higher-level NPR algorithms,

capable of making decisions about style based on the semantic content of a scene rather

than the low-level relationship between pixels and objects. Such a system would be a big

step in producing automatic artistic systems that make decisions about stylistic content

similar to those an artist might make.
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grammable Style for NPR Line Drawing. In Rendering Techniques 2004 (Euro-

graphics Symposium on Rendering). ACM Press, June 2004.

[42] Matt Groening. Futurama, 1999–2003. 20th Century Fox.

[43] Paul Haeberli. Paint by Numbers: Abstract Image Representations. In Proceedings

of the 17th Annual Conference on Computer Graphics and Interactive Techniques,

pages 207–214. ACM Press, 1990.

[44] Alejo Hausner. Simulating Decorative Mosaics. In SIGGRAPH ’01: Proceedings

of the 28th Annual Conference on Computer Graphics and Interactive Techniques,

pages 573–580. ACM Press, 2001.

[45] Aaron Hertzmann. Painterly Rendering with Curved Brush Strokes of Multiple

Sizes. In Proceedings of the 25th Annual Conference on Computer Graphics and

Interactive Techniques, pages 453–460. ACM Press, 1998.

[46] Aaron Hertzmann. Fast Paint Texture. In NPAR ’02: Proceedings of the 2nd

International Symposium on Non-Photorealistic Animation and Rendering, pages

91–96. ACM Press, 2002.

[47] Aaron Hertzmann and Ken Perlin. Painterly Rendering for Video and Interac-

tion. In NPAR ’00: Proceedings of the 1st International Symposium on Non-

Photorealistic Animation and Rendering, pages 7–12. ACM Press, 2000.

[48] Aaron Hertzmann and Denis Zorin. Illustrating Smooth Surfaces. In Proceedings

of the 27th Annual Conference on Computer Graphics and Interactive Techniques,

pages 517–526. ACM Press/Addison-Wesley Publishing Co., 2000.



Bibliography 102

[49] D. Hochbaum and D. Shmoys. A Best Possible Heuristic for the K-Center Problem.

Mathematics of Operations Research, 1985.

[50] Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan Schlechtweg, and Thomas

Strothotte. A Developer’s Guide to Silhouette Algorithms for Polygonal Models.

IEEE Computer Graphics and Applications, 23(4):28–37, 2003.

[51] Tobias Isenberg, Nick Halper, and Thomas Strothotte. Stylizing Silhouettes at

Interactive Rates: From Silhouette Edges to Silhouette Strokes. In Computer

Graphics Forum (Proceedings of EUROGRAPHICS), volume 21, pages 249–258.

Blackwell Publishing, September 2002.

[52] Robert D. Kalnins, Philip L. Davidson, Lee Markosian, and Adam Finkelstein.

Coherent Stylized Silhouettes. ACM Transactions on Graphics, 22(3):856–861,

July 2003.

[53] Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A. Kowalski,

Joseph C. Lee, Philip L. Davidson, Matthew Webb, John F. Hughes, and Adam

Finkelstein. WYSIWYG NPR: Drawing Strokes Directly on 3D Models. In SIG-

GRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics

and Interactive Techniques, pages 755–762. ACM Press, 2002.

[54] R. Kannan, S. Vempala, and A. Veta. On Clusterings: Good, Bad and Spectral. In

FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of Computer

Science, page 367. IEEE Computer Society, 2000.

[55] Allison W. Klein, Wilmot Li, Michael M. Kazhdan, Wagner T. Corrêa, Adam
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